Применение дискриминационной модели в управлении риском потребительских кредитов в коммерческом банке Вьетнама // Applying Discriminant Model to Manage Credit Risk for Consumer Loans in Vietnamese Commercial Bank
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Sihem Khemakhem & Younes Boujelbene, 2015. "Credit Risk Prediction: A Comparative Study between Discriminant Analysis and the Neural Network Approach," Journal of Accounting and Management Information Systems, Faculty of Accounting and Management Information Systems, The Bucharest University of Economic Studies, vol. 14(1), pages 60-78, March.
- Awh, Robert Y & Waters, D, 1974. "A Discriminant Analysis of Economic, Demographic, and Attitudinal Characteristics of Bank Charge-Card Holders: A Case Study," Journal of Finance, American Finance Association, vol. 29(3), pages 973-980, June.
- J J Glen, 2001. "Classification accuracy in discriminant analysis: a mixed integer programming approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(3), pages 328-339, March.
- Dinh, Thi Huyen Thanh & Kleimeier, Stefanie, 2007. "A credit scoring model for Vietnam's retail banking market," International Review of Financial Analysis, Elsevier, vol. 16(5), pages 471-495.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hussein A. Abdou & John Pointon, 2011. "Credit Scoring, Statistical Techniques And Evaluation Criteria: A Review Of The Literature," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(2-3), pages 59-88, April.
- Dan Wang & Zhi Chen & Ionut Florescu, 2021. "A Sparsity Algorithm with Applications to Corporate Credit Rating," Papers 2107.10306, arXiv.org.
- B Baesens & T Van Gestel & S Viaene & M Stepanova & J Suykens & J Vanthienen, 2003. "Benchmarking state-of-the-art classification algorithms for credit scoring," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(6), pages 627-635, June.
- Lydia L. Gan & Ramin Cooper Maysami, 2006. "Credit Card Selection Criteria: Singapore Perspective," Economic Growth Centre Working Paper Series 0610, Nanyang Technological University, School of Social Sciences, Economic Growth Centre.
- Lkhagvadorj Munkhdalai & Tsendsuren Munkhdalai & Oyun-Erdene Namsrai & Jong Yun Lee & Keun Ho Ryu, 2019. "An Empirical Comparison of Machine-Learning Methods on Bank Client Credit Assessments," Sustainability, MDPI, vol. 11(3), pages 1-23, January.
- Ha-Thu Nguyen, 2015. "How is credit scoring used to predict default in China?," EconomiX Working Papers 2015-1, University of Paris Nanterre, EconomiX.
- Watson, John J., 2003. "The relationship of materialism to spending tendencies, saving, and debt," Journal of Economic Psychology, Elsevier, vol. 24(6), pages 723-739, December.
- Lobna Abid & Afif Masmoudi & Sonia Zouari-Ghorbel, 2018. "The Consumer Loan’s Payment Default Predictive Model: an Application of the Logistic Regression and the Discriminant Analysis in a Tunisian Commercial Bank," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 9(3), pages 948-962, September.
- Dorfleitner, G. & Just-Marx, S. & Priberny, C., 2017. "What drives the repayment of agricultural micro loans? Evidence from Nicaragua," The Quarterly Review of Economics and Finance, Elsevier, vol. 63(C), pages 89-100.
- Kara, Ali & Kaynak, Erdener & Kucukemiroglu, Orsay, 1996. "An empirical investigation of US credit card users: Card choice and usage behavior," International Business Review, Elsevier, vol. 5(2), pages 209-230, April.
- Shigeyuki Hamori & Takahiro Kume, 2018. "Artificial Intelligence And Economic Growth," Advances in Decision Sciences, Asia University, Taiwan, vol. 22(1), pages 256-278, December.
- Soulef Smaoui & Belaid Aouni, 2017. "Fuzzy goal programming model for classification problems," Annals of Operations Research, Springer, vol. 251(1), pages 141-160, April.
- Mingue Sun, 2009. "Liquidity Risk and Financial Competition: A Mixed Integer Programming Model for Multiple-Class Discriminant Analysis," Working Papers 0102, College of Business, University of Texas at San Antonio.
- J. J. Glen, 2004. "Dichotomous categorical variable formation in mathematical programming discriminant analysis models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(4), pages 575-596, June.
- Beisland, Leif Atle & Mersland, Roy & Randøy, Trond, 2014. "The Association between microfinance rating scores and corporate governance: a global survey," International Review of Financial Analysis, Elsevier, vol. 35(C), pages 268-280.
- Frédéric Tronnier & David Harborth & Patrick Biker, 2023. "Applying the extended attitude formation theory to central bank digital currencies," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-21, December.
- Parisa Golbayani & Ionuc{t} Florescu & Rupak Chatterjee, 2020. "A comparative study of forecasting Corporate Credit Ratings using Neural Networks, Support Vector Machines, and Decision Trees," Papers 2007.06617, arXiv.org.
- Michael O. Olusola & Sydney I. Onyeagu, 2020. "On the binary classification problem in discriminant analysis using linear programming methods," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 30(1), pages 119-130.
- Rüştü YAYAR & Süleyman Serdar KARACA, 2012. "Identifying The Factors Affecting The Consumer Credit Card Ownership: Empirical Evidence From Turkey," Journal of Applied Economic Sciences, Spiru Haret University, Faculty of Financial Management and Accounting Craiova, vol. 7(2(20)/ Su), pages 195-204.
- Salihu, Armend & Shehu, Visar, 2020. "A Review of Algorithms for Credit Risk Analysis," Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference (2020), Virtual Conference, in: Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference, Virtual Conference, 10-12 September 2020, pages 134-146, IRENET - Society for Advancing Innovation and Research in Economy, Zagreb.
More about this item
Keywords
consumer credit; financial distress; prediction; demographic and socio-economic characteristics; two-group discriminant analysis; потребительский кредит; финансовое неблагополучие; демографические и социально-экономические характеристики; бинарный дискриминационный анализ;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:scn:00rbes:y:2016:i:4:p:5-16. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Алексей Скалабан (email available below). General contact details of provider: http://rbes.fa.ru/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.