IDEAS home Printed from https://ideas.repec.org/a/scn/00rbes/y2015i4p88-92.html
   My bibliography  Save this article

Geometry Of Economics: Volumetric Distribution Analysis Of Economic Continuity And Stability

Author

Listed:
  • I. Kuntsevich

    (Beverly Investment Group)

Abstract

While economics derives its value from daily activity of its participants, logically making it a derivative (speed), a traditional approximation of economic variables is carried out using a set of linear and / or nonlinear regression equations and correlation analysis, with no differentiation involved. This explains why the traditionalanalysis is not capable of identification and prevention of a looming economic crisis: firstly, linear and nonlinearregression value approximation method always relies on continuity assumption of a variable, and secondly, focusing on speed of economics doesn’t solve a known limitation of a derivative - its continuity cannot be predicted. This limitation is proposed to be solved with volumetric distribution analysis using volumetric 3D geometry, allowing tracing how distribution of the entire population of the examined variables changes intime and volume as volumetric geometric figures, and what effect it has on continuity of its gradient -the “barometer” of an economic system. Our hypothesis is that a system is stable when it takes a nondegenerate geometric shape and unstable otherwise. An economy can take one shape or another, as volumetric distribution analysis shows, and visualizing it with geometric shapes and respective gradient can help predict its continuity. В то время как ценность экономики создается за счет повседневной деятельности ее участников, что логически делает ее производной (скоростью), традиционное определение значений экономических переменных осуществляется с помощью набора линейных и/или нелинейных уравнений регрессиии корреляционного анализа без использования дифференциальных уравнений. Это объясняет, почему традиционный анализ не способен к выявлению и предотвращению надвигающегося экономического кризиса: во-первых, метод линейной и нелинейной регрессии всегда опирается на предположение непрерывности переменной, а во-вторых, сосредотачиваясь исключительно на скорости экономики, невозможно решить известное ограничение производной - ее непрерывность не может быть предсказана. Данное ограничение предлагается решить с помощью анализа объемного распределения изучаемых переменных с использованием объемной 3D-геометрии, позволяющей отслеживать изменение распределения совокупности изучаемых переменных во времени и пространстве в виде объемных геометрических фигур, а также влияние, которое она оказывает на постоянство ее градиента - «барометра» стабильности экономической системы. Наша гипотеза заключается в том, что система устойчива, когда она принимает невырожденную геометрическую форму, и нестабильна в обратном случае. Как показывает анализ объемного распределения, экономика может принимать ту или иную форму, и ее визуализацияс помощью геометрических фигур и соответствующего градиента поможет предсказать непрерывность ее значений.

Suggested Citation

  • I. Kuntsevich, 2015. "Geometry Of Economics: Volumetric Distribution Analysis Of Economic Continuity And Stability," Review of Business and Economics Studies // Review of Business and Economics Studies, Финансовый Университет // Financial University, vol. 3(4), pages 88-92.
  • Handle: RePEc:scn:00rbes:y:2015:i:4:p:88-92
    as

    Download full text from publisher

    File URL: https://rbes.fa.ru/jour/article/viewFile/29/29.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adrian Dragulescu & Victor M. Yakovenko, 2000. "Statistical mechanics of money," Papers cond-mat/0001432, arXiv.org, revised Aug 2000.
    2. Michael Richter & Ariel Rubinstein, 2013. "Back to Fundamentals: Convex Geometry and Economic Equilibrium," Levine's Working Paper Archive 786969000000000836, David K. Levine.
    3. Danilov, Vladimir & Koshevoy, Gleb & Murota, Kazuo, 2001. "Discrete convexity and equilibria in economies with indivisible goods and money," Mathematical Social Sciences, Elsevier, vol. 41(3), pages 251-273, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ellis Scharfenaker, Markus P.A. Schneider, 2019. "Labor Market Segmentation and the Distribution of Income: New Evidence from Internal Census Bureau Data," Working Paper Series, Department of Economics, University of Utah 2019_08, University of Utah, Department of Economics.
    2. repec:voc:wpaper:tech82012 is not listed on IDEAS
    3. Chao Huang, 2021. "Stable matching: an integer programming approach," Papers 2103.03418, arXiv.org, revised Apr 2022.
    4. Costas Efthimiou & Adam Wearne, 2016. "Household Income Distribution in the USA," Papers 1602.06234, arXiv.org.
    5. Ricardo Lopez-Ruiz & Elyas Shivanian & Jose-Luis Lopez, 2013. "Random Market Models with an H-Theorem," Papers 1307.2169, arXiv.org, revised Jul 2014.
    6. Hutzler, S. & Sommer, C. & Richmond, P., 2016. "On the relationship between income, fertility rates and the state of democracy in society," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 9-18.
    7. Venkatasubramanian, Venkat & Luo, Yu & Sethuraman, Jay, 2015. "How much inequality in income is fair? A microeconomic game theoretic perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 435(C), pages 120-138.
    8. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    9. Hernández-Ramírez, E. & del Castillo-Mussot, M. & Hernández-Casildo, J., 2021. "World per capita gross domestic product measured nominally and across countries with purchasing power parity: Stretched exponential or Boltzmann–Gibbs distribution?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 568(C).
    10. Ngoc Mai Tran & Josephine Yu, 2015. "Product-Mix Auctions and Tropical Geometry," Papers 1505.05737, arXiv.org, revised Oct 2017.
    11. Bertram During & Nicos Georgiou & Enrico Scalas, 2016. "A stylized model for wealth distribution," Papers 1609.08978, arXiv.org, revised Jul 2021.
    12. Hsin-Lun Li, 2023. "Application of the Deffuant model in money exchange," Papers 2307.02512, arXiv.org.
    13. Lorenzo Pareschi & Giuseppe Toscani, 2014. "Wealth distribution and collective knowledge. A Boltzmann approach," Papers 1401.4550, arXiv.org.
    14. Klaus Jaffé, 2015. "Visualizing the Invisible Hand of Markets: Simulating Complex Dynamic Economic Interactions," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 22(2), pages 115-132, April.
    15. Ellis Scharfenaker, 2022. "Statistical Equilibrium Methods In Analytical Political Economy," Journal of Economic Surveys, Wiley Blackwell, vol. 36(2), pages 276-309, April.
    16. Fei Cao & Sebastien Motsch, 2021. "Derivation of wealth distributions from biased exchange of money," Papers 2105.07341, arXiv.org.
    17. Smerlak, Matteo, 2016. "Thermodynamics of inequalities: From precariousness to economic stratification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 40-50.
    18. Mimkes, Jürgen, 2010. "Stokes integral of economic growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(8), pages 1665-1676.
    19. Jos'e Mar'ia Sarabia & Faustino Prieto & Vanesa Jord'a, 2014. "A variation of the Dragulescu-Yakovenko income model," Papers 1406.5083, arXiv.org.
    20. Anca Gheorghiu & Ion Sp^anulescu, 2011. "Macrostate Parameter and Investment Risk Diagrams for 2008 and 2009," Papers 1101.4674, arXiv.org.
    21. Wright, Ian, 2009. "Implicit Microfoundations for Macroeconomics," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-27.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:scn:00rbes:y:2015:i:4:p:88-92. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Алексей Скалабан (email available below). General contact details of provider: http://rbes.fa.ru/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.