IDEAS home Printed from https://ideas.repec.org/a/sbe/breart/v28y2008i1a1518.html
   My bibliography  Save this article

Extracting Default Probabilities from Sovereign Bonds

Author

Listed:
  • Meres, Bernardo
  • Almeida, Caio

Abstract

Sovereign risk analysis is central in debt markets. Considering different bonds and countries, there are numerous measures aiming to identify the way risk is perceived by market participants. In such environment, probabilities of default play a central role in investors’ decisions. This article contributes by providing a parametric arbitrage-free dynamic model to estimate defaultable term structures of sovereign bonds. The proposed model builds on Duffie and Singleton’s (1999) general reduced-form model by proposing a piecewise constant structure for the conditional probabilities of defaults. Once an average recovery rate value is fixed for the whole market, the proposed model estimates implied probabilities of defaults from bond prices, working as a parsimonious tool to quantify investor’s perception of credit risk. We apply this methodology to analyze the behavior of default probabilities within the Brazilian sovereign fixed income market at three different recent economic moments.

Suggested Citation

  • Meres, Bernardo & Almeida, Caio, 2008. "Extracting Default Probabilities from Sovereign Bonds," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 28(1), May.
  • Handle: RePEc:sbe:breart:v:28:y:2008:i:1:a:1518
    as

    Download full text from publisher

    File URL: https://periodicos.fgv.br/bre/article/view/1518
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tang, Huarong & Xia, Yihong, 2007. "An International Examination of Affine Term Structure Models and the Expectations Hypothesis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 42(1), pages 41-80, March.
    2. Houweling, Patrick & Vorst, Ton, 2005. "Pricing default swaps: Empirical evidence," Journal of International Money and Finance, Elsevier, vol. 24(8), pages 1200-1225, December.
    3. Duffie, Darrell & Singleton, Kenneth J, 1999. "Modeling Term Structures of Defaultable Bonds," The Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 687-720.
    4. Darrell Duffie & Lasse Heje Pedersen & Kenneth J. Singleton, 2003. "Modeling Sovereign Yield Spreads: A Case Study of Russian Debt," Journal of Finance, American Finance Association, vol. 58(1), pages 119-159, February.
    5. Robert A. Jarrow & Stuart M. Turnbull, 2008. "Pricing Derivatives on Financial Securities Subject to Credit Risk," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 17, pages 377-409, World Scientific Publishing Co. Pte. Ltd..
    6. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    7. Caio Ibsen Rodrigues De Almeida & Antonio Marcos Duarte & Cristiano Augusto Coelho Fernandes, 2003. "A Generalization Of Principal Component Analysis For Non-Observable Term Structures In Emerging Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 6(08), pages 885-903.
    8. Berardi, Andrea & Ciraolo, Stefania & Trova, Michele, 2004. "Predicting default probabilities and implementing trading strategies for emerging markets bond portfolios," Emerging Markets Review, Elsevier, vol. 5(4), pages 447-469, December.
    9. P. Collin-Dufresne & R. Goldstein & J. Hugonnier, 2004. "A General Formula for Valuing Defaultable Securities," Econometrica, Econometric Society, vol. 72(5), pages 1377-1407, September.
    10. Merrick Jr., John J., 2001. "Crisis dynamics of implied default recovery ratios: Evidence from Russia and Argentina," Journal of Banking & Finance, Elsevier, vol. 25(10), pages 1921-1939, October.
    11. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    12. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    2. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 5, July-Dece.
    3. Jobst, Norbert J. & Zenios, Stavros A., 2005. "On the simulation of portfolios of interest rate and credit risk sensitive securities," European Journal of Operational Research, Elsevier, vol. 161(2), pages 298-324, March.
    4. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    5. Cheikh Mbaye & Frédéric Vrins, 2022. "Affine term structure models: A time‐change approach with perfect fit to market curves," Mathematical Finance, Wiley Blackwell, vol. 32(2), pages 678-724, April.
    6. Ericsson, Jan & Jacobs, Kris & Oviedo, Rodolfo, 2009. "The Determinants of Credit Default Swap Premia," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 44(1), pages 109-132, February.
    7. Leonard Tchuindjo, 2007. "Pricing of Multi-Defaultable Bonds with a Two-Correlated-Factor Hull-White Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(1), pages 19-39.
    8. Brian BARNARD, 2017. "Rating Migration and Bond Valuation: Decomposing Rating Migration Matrices from Market Data via Default Probability Term Structures," Expert Journal of Finance, Sprint Investify, vol. 5(1), pages 49-72.
    9. Brian BARNARD, 2018. "Rating Migration and Bond Valuation: Ahistorical Interest Rate and Default Probability Term Structures," Expert Journal of Finance, Sprint Investify, vol. 6(1), pages 16-30.
    10. Brian BARNARD, 2017. "Rating Migration and Bond Valuation: Decomposing Rating Migration Matrices from Market Data via Default Probability Term Structures," Expert Journal of Finance, Sprint Investify, vol. 5, pages 49-72.
    11. Sottile, Pedro, 2013. "On the political determinants of sovereign risk: Evidence from a Markov-switching vector autoregressive model for Argentina," Emerging Markets Review, Elsevier, vol. 15(C), pages 160-185.
    12. Ramaprasad Bhar, 2010. "Stochastic Filtering with Applications in Finance," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7736, September.
    13. Lily Y. Liu, 2017. "Estimating Loss Given Default from CDS under Weak Identification," Supervisory Research and Analysis Working Papers RPA 17-1, Federal Reserve Bank of Boston.
    14. Diaz Weigel, Diana & Gemmill, Gordon, 2006. "What drives credit risk in emerging markets? The roles of country fundamentals and market co-movements," Journal of International Money and Finance, Elsevier, vol. 25(3), pages 476-502, April.
    15. John Y. Campbell & Glen B. Taksler, 2003. "Equity Volatility and Corporate Bond Yields," Journal of Finance, American Finance Association, vol. 58(6), pages 2321-2350, December.
    16. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    17. Duffie, Darrell, 2005. "Credit risk modeling with affine processes," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2751-2802, November.
    18. Houweling, Patrick & Hoek, Jaap & Kleibergen, Frank, 2001. "The joint estimation of term structures and credit spreads," Journal of Empirical Finance, Elsevier, vol. 8(3), pages 297-323, July.
    19. Matsumura, Marco S. & Vicente, José Valentim Machado, 2010. "The role of macroeconomic variables in sovereign risk," Emerging Markets Review, Elsevier, vol. 11(3), pages 229-249, September.
    20. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sbe:breart:v:28:y:2008:i:1:a:1518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Núcleo de Computação da FGV EPGE (email available below). General contact details of provider: https://edirc.repec.org/data/sbeeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.