IDEAS home Printed from https://ideas.repec.org/a/sbe/breart/v26y2006i2a1581.html
   My bibliography  Save this article

Goodness-of-fit Tests Focus on Value-at-Risk Estimation

Author

Listed:
  • Barbachan, José Santiago Fajardo
  • Ornelas, José Renato Haas
  • de Farias, Aquiles Rocha

Abstract

A common statistical problem in finance is measuring the goodness-of-fit of a given distribution to real world data. This can be done using distances to measure how close an empirical distribution is from a theoretical distribution. The tails of the distribution should receive special importance if the focus is on Value-at-Risk (VaR) calculations. This paper analyzes the use of distances to test the goodness-of-fit of estimated distributions for VaR calculation purposes. The Crnkovic and Drachman (1996) distance and a new distance are used to perform goodness-of-fit tests. The critical values of the tests are obtained using Monte Carlo simulation, and goodness-of-fit tests are performed based on the distances. The power of the tests is assessed through Monte Carlo experiments, showing good results for sample sizes greater than 250. The US Dollar/Brazilian Real exchange rate and the Ibovespa index are used as examples of practical applications of how to test the hypothesis that an empirical distribution is equal to an estimated one. The estimated distributions considered are the Generalized Hyperbolic (GH), the NIG (Normal Inverse Gaussian) and Normal. The test results rejected the null hypothesis for the Normal distribution, but did not reject it for the Generalized Hyperbolic and NIG, both at a 1% significance level.

Suggested Citation

  • Barbachan, José Santiago Fajardo & Ornelas, José Renato Haas & de Farias, Aquiles Rocha, 2006. "Goodness-of-fit Tests Focus on Value-at-Risk Estimation," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 26(2), November.
  • Handle: RePEc:sbe:breart:v:26:y:2006:i:2:a:1581
    as

    Download full text from publisher

    File URL: https://periodicos.fgv.br/bre/article/view/1581
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fajardo, José & Farias, Aquiles, 2004. "Generalized Hyperbolic Distributions and Brazilian Data," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 24(2), November.
    2. Kerkhof, Jeroen & Melenberg, Bertrand, 2004. "Backtesting for risk-based regulatory capital," Journal of Banking & Finance, Elsevier, vol. 28(8), pages 1845-1865, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Carlos Escanciano & Zaichao Du, 2015. "Backtesting Expected Shortfall: Accounting for Tail Risk," CAEPR Working Papers 2015-001, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    2. Barbara Alemanni & José Renato Haas Ornelas, 2006. "Herding Behavior by Equity Foreign Investors on Emerging Markets," Working Papers Series 125, Central Bank of Brazil, Research Department.
    3. Araújo, Aloísio Pessoa de & Leon, Márcia Saraiva, 2003. "Speculative attacks on debts and optimum currency area: a welfare analysis," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 514, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    4. José Santiago Fajardo Barbachan & Aquiles Rocha de Farias & José Renato Haas Ornelas, 2008. "A Goodness-of-Fit Test with Focus on Conditional Value at Risk," Brazilian Review of Finance, Brazilian Society of Finance, vol. 6(2), pages 139-155.
    5. Sergio R. S. Souza & Benjamin M. Tabak & Daniel O. Cajueiro, 2008. "Long-Range Dependence In Exchange Rates: The Case Of The European Monetary System," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(02), pages 199-223.
    6. Alfonso Novales & Laura Garcia-Jorcano, 2019. "Backtesting Extreme Value Theory models of expected shortfall," Documentos de Trabajo del ICAE 2019-24, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    7. Taras Bodnar & Vilhelm Niklasson & Erik Thors'en, 2022. "Volatility Sensitive Bayesian Estimation of Portfolio VaR and CVaR," Papers 2205.01444, arXiv.org.
    8. Marcelo Y. Takami & Benjamin M. Tabak, 2007. "Evaluation of Default Risk for The Brazilian Banking Sector," Working Papers Series 135, Central Bank of Brazil, Research Department.
    9. Baum, Christopher F. & Zerilli, Paola & Chen, Liyuan, 2021. "Stochastic volatility, jumps and leverage in energy and stock markets: Evidence from high frequency data," Energy Economics, Elsevier, vol. 93(C).
    10. Tsukahara, Fábio Yasuhiro & Kimura, Herbert & Sobreiro, Vinicius Amorim & Zambrano, Juan Carlos Arismendi, 2016. "Validation of default probability models: A stress testing approach," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 70-85.
    11. Minella, Andre & de Freitas, Paulo Springer & Goldfajn, Ilan & Muinhos, Marcelo Kfoury, 2003. "Inflation targeting in Brazil: constructing credibility under exchange rate volatility," Journal of International Money and Finance, Elsevier, vol. 22(7), pages 1015-1040, December.
    12. Leonardo Soriano de Alencar & Márcio I. Nakane, 2004. "Bank Competition, Agency Costs and the Performance of the Monetary Policy," Working Papers Series 81, Central Bank of Brazil, Research Department.
    13. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
    14. Katherine Uylangco & Siqiwen Li, 2016. "An evaluation of the effectiveness of Value-at-Risk (VaR) models for Australian banks under Basel III," Australian Journal of Management, Australian School of Business, vol. 41(4), pages 699-718, November.
    15. Leonardo Soriano de Alencar & Márcio I. Nakane, 2003. "Real Balances in the Utility Function: Evidence for Brazil," Working Papers Series 68, Central Bank of Brazil, Research Department.
    16. Lai, Yongzeng, 2009. "Generating inverse Gaussian random variates by approximation," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3553-3559, August.
    17. Wong, Woon K., 2008. "Backtesting trading risk of commercial banks using expected shortfall," Journal of Banking & Finance, Elsevier, vol. 32(7), pages 1404-1415, July.
    18. Kerkhof, F.L.J., 2003. "Model risk analysis for risk management and option pricing," Other publications TiSEM 01692df5-4c2d-4ed2-8108-4, Tilburg University, School of Economics and Management.
    19. Osmundsen, Kjartan Kloster, 2018. "Using expected shortfall for credit risk regulation," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 57(C), pages 80-93.
    20. Richard Gerlach & Declan Walpole & Chao Wang, 2017. "Semi-parametric Bayesian tail risk forecasting incorporating realized measures of volatility," Quantitative Finance, Taylor & Francis Journals, vol. 17(2), pages 199-215, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sbe:breart:v:26:y:2006:i:2:a:1581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Núcleo de Computação da FGV EPGE (email available below). General contact details of provider: https://edirc.repec.org/data/sbeeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.