IDEAS home Printed from https://ideas.repec.org/a/sbe/breart/v22y2002i1a2746.html
   My bibliography  Save this article

Non-stationary Gaussian ARFIMA processes: Estimation and application

Author

Listed:
  • Lopes, Sílvia Regina Costa
  • Olbermann, Bárbara Patrícia
  • Reisen, Valderio Anselmo

Abstract

Recently, the study of time series turned the attention to the ones having long memory property. The ARFIMA (p,d,q) model shows this property when the degree of differencing d is in the interval (0.0,0.5), range where the process is stationary. In this work, we analyze the estimation of the degree d* in ARFIMA (p,d*,q) processes when d* >0.5, that is, when the processes are non-stationary but still have the property of long memory. We present a simulation study for the estimators of d* with semiparametric and parametric methods and different sample sizes. The methodology is applied to the experimental data series of UK long interest gilts.

Suggested Citation

  • Lopes, Sílvia Regina Costa & Olbermann, Bárbara Patrícia & Reisen, Valderio Anselmo, 2002. "Non-stationary Gaussian ARFIMA processes: Estimation and application," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 22(1), May.
  • Handle: RePEc:sbe:breart:v:22:y:2002:i:1:a:2746
    as

    Download full text from publisher

    File URL: https://periodicos.fgv.br/bre/article/view/2746
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Ping & Crato, Nuno, 1995. "New Tests for Stationarity and Parity Reversion: Evidence on New Zealand Real Exchange Rates," Empirical Economics, Springer, vol. 20(4), pages 599-613.
    2. Clifford M. Hurvich & Rohit S. Deo, 1999. "Plug‐in Selection of the Number of Frequencies in Regression Estimates of the Memory Parameter of a Long‐memory Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(3), pages 331-341, May.
    3. Clifford M. Hurvich & Bonnie K. Ray, 1995. "Estimation Of The Memory Parameter For Nonstationary Or Noninvertible Fractionally Integrated Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 16(1), pages 17-41, January.
    4. Velasco, Carlos, 1999. "Non-stationary log-periodogram regression," Journal of Econometrics, Elsevier, vol. 91(2), pages 325-371, August.
    5. Liu, Ming, 1998. "Asymptotics Of Nonstationary Fractional Integrated Series," Econometric Theory, Cambridge University Press, vol. 14(5), pages 641-662, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salvatore Carta & Andrea Medda & Alessio Pili & Diego Reforgiato Recupero & Roberto Saia, 2018. "Forecasting E-Commerce Products Prices by Combining an Autoregressive Integrated Moving Average (ARIMA) Model and Google Trends Data," Future Internet, MDPI, vol. 11(1), pages 1-19, December.
    2. Irina Syssoyeva-Masson & João de Sousa Andrade, 2017. "The Effect of Public Debt on Growth in Multiple Regimes in the Presence of Long-Memory and Non-Stationary Debt Series," CeBER Working Papers 2017-07, Centre for Business and Economics Research (CeBER), University of Coimbra.
    3. Barbara Olbermann & Sílvia Lopes & Valdério Reisen, 2006. "Invariance of the first difference in ARFIMA models," Computational Statistics, Springer, vol. 21(3), pages 445-461, December.
    4. Joao Sousa Andrade & Irina Syssoyeva-Masson, 2016. "Investigating the presence of long memory in debt series and its relation with growth," EcoMod2016 9627, EcoMod.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hassler, U. & Marmol, F. & Velasco, C., 2006. "Residual log-periodogram inference for long-run relationships," Journal of Econometrics, Elsevier, vol. 130(1), pages 165-207, January.
    2. Chang Sik Kim & Peter C.B. Phillips, 2006. "Log Periodogram Regression: The Nonstationary Case," Cowles Foundation Discussion Papers 1587, Cowles Foundation for Research in Economics, Yale University.
    3. Franco, Glaura C. & Reisen, Valderio A., 2007. "Bootstrap approaches and confidence intervals for stationary and non-stationary long-range dependence processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 546-562.
    4. Ye, Xunyu & Gao, Ping & Li, Handong, 2015. "Improving estimation of the fractionally differencing parameter in the SARFIMA model using tapered periodogram," Economic Modelling, Elsevier, vol. 46(C), pages 167-179.
    5. repec:diw:diwwpp:dp1647 is not listed on IDEAS
    6. Caporale, Guglielmo Maria & Gil-Alana, Luis & Plastun, Alex, 2018. "Is market fear persistent? A long-memory analysis," Finance Research Letters, Elsevier, vol. 27(C), pages 140-147.
    7. Adam McCloskey, 2013. "Estimation of the long-memory stochastic volatility model parameters that is robust to level shifts and deterministic trends," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(3), pages 285-301, May.
    8. Liudas Giraitis & Peter M Robinson, 2002. "Edgeworth Expansions for Semiparametric Whittle Estimation of Long Memory," STICERD - Econometrics Paper Series 438, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    9. Giraitis, L. & Robinson, P.M., 2003. "Edgeworth expansions for semiparametric Whittle estimation of long memory," LSE Research Online Documents on Economics 291, London School of Economics and Political Science, LSE Library.
    10. Guglielmo Caporale & Luis Gil-Alana, 2013. "Long memory in US real output per capita," Empirical Economics, Springer, vol. 44(2), pages 591-611, April.
    11. de Truchis, Gilles, 2013. "Approximate Whittle analysis of fractional cointegration and the stock market synchronization issue," Economic Modelling, Elsevier, vol. 34(C), pages 98-105.
    12. Gilles Dufrénot & Valérie Mignon & Théo Naccache, 2009. "The slow convergence of per capita income between the developing countries: “growth resistance” and sometimes “growth tragedy”," Discussion Papers 09/03, University of Nottingham, CREDIT.
    13. Yixun Xing & Wayne A. Woodward, 2021. "R-Squared-Bootstrapping for Gegenbauer-Type Long Memory," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 773-790, February.
    14. João Valle e Azevedo, 2007. "A Multivariate Band-Pass Filter," Working Papers w200717, Banco de Portugal, Economics and Research Department.
    15. Frank S. Nielsen, 2011. "Local Whittle estimation of multi‐variate fractionally integrated processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(3), pages 317-335, May.
    16. Reisen Valderio A & Cribari-Neto Francisco & Jensen Mark J, 2003. "Long Memory Inflationary Dynamics: The Case of Brazil," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 7(3), pages 1-18, October.
    17. Giraitis, Liudas & Robinson, Peter M. & Samarov, Alexander, 2000. "Adaptive Semiparametric Estimation of the Memory Parameter," Journal of Multivariate Analysis, Elsevier, vol. 72(2), pages 183-207, February.
    18. Arielle Beyaert, 2004. "Fractional Output Convergence, with an Application to Nine Developed Countries," Econometric Society 2004 Australasian Meetings 280, Econometric Society.
    19. João Valle e Azevedo, 2007. "Interpretation of the Effects of Filtering Integrated Time Series," Working Papers w200712, Banco de Portugal, Economics and Research Department.
    20. Peter M Robinson, 2004. "The Distance between Rival Nonstationary Fractional Processes," STICERD - Econometrics Paper Series 468, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    21. Dolado Juan J. & Gonzalo Jesus & Mayoral Laura, 2008. "Wald Tests of I(1) against I(d) Alternatives: Some New Properties and an Extension to Processes with Trending Components," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(4), pages 1-35, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sbe:breart:v:22:y:2002:i:1:a:2746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Núcleo de Computação da FGV EPGE (email available below). General contact details of provider: https://edirc.repec.org/data/sbeeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.