IDEAS home Printed from https://ideas.repec.org/a/sbe/breart/v18y1998i1a2843.html
   My bibliography  Save this article

Financial Modeling Using Sampling-Importance Resampling

Author

Listed:
  • Mendes, Beatriz Vaz de Melo

Abstract

While Bayesian methodology has been for decades widely applied to econometric models, robust methods had just lately gained more attention of econometricians. More recently, simulation-based techniques, such as the Sampling-Importance Resampling (SIR) algorithm, have become useful and popular approaches to statistical problems. This article puts together the robust and Bayesian approaches through the SIR technique. Using financial models we show how the statistics usually obtained through the SIR technique can be enhanced by the incorporation of robust aspects. For these models we investigate the posterior inference sensitivity in relation to the change in the likelihood and prior distribution, and obtain the SIR point estimates as well as confidence intervals, which are compared to classical and robust solutions.

Suggested Citation

  • Mendes, Beatriz Vaz de Melo, 1998. "Financial Modeling Using Sampling-Importance Resampling," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 18(1), May.
  • Handle: RePEc:sbe:breart:v:18:y:1998:i:1:a:2843
    as

    Download full text from publisher

    File URL: https://periodicos.fgv.br/bre/article/view/2843
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
    2. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    3. Robert F. Engle & David F. Hendry & David Trumble, 1985. "Small-Sample Properties of ARCH Estimators and Tests," Canadian Journal of Economics, Canadian Economics Association, vol. 18(1), pages 66-93, February.
    4. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tim Bollerslev & Ray Y. Chou & Narayanan Jayaraman & Kenneth F. Kroner - L, 1991. "es modéles ARCH en finance : un point sur la théorie et les résultats empiriques," Annals of Economics and Statistics, GENES, issue 24, pages 1-59.
    2. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038, Elsevier.
    3. John Geweke & Joel Horowitz & M. Hashem Pesaran, 2006. "Econometrics: A Bird’s Eye View," CESifo Working Paper Series 1870, CESifo.
    4. Gabriele Fiorentini & Enrique Sentana & Neil Shephard, 2004. "Likelihood-Based Estimation of Latent Generalized ARCH Structures," Econometrica, Econometric Society, vol. 72(5), pages 1481-1517, September.
    5. Aknouche, Abdelhakim & Demmouche, Nacer & Touche, Nassim, 2018. "Bayesian MCMC analysis of periodic asymmetric power GARCH models," MPRA Paper 91136, University Library of Munich, Germany.
    6. Gregory, Allan W, 1989. "A Nonparametric Test for Autoregressive Conditional Heteroscedasticity: A Markov-Chain Approach," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(1), pages 107-115, January.
    7. Hoogerheide, Lennart & van Dijk, Herman K., 2010. "Bayesian forecasting of Value at Risk and Expected Shortfall using adaptive importance sampling," International Journal of Forecasting, Elsevier, vol. 26(2), pages 231-247, April.
    8. Sofia Anyfantaki & Antonis Demos, 2016. "Estimation and Properties of a Time-Varying EGARCH(1,1) in Mean Model," Econometric Reviews, Taylor & Francis Journals, vol. 35(2), pages 293-310, February.
    9. Lennart Hoogerheide & Anne Opschoor & Herman K. van Dijk, 2011. "A Class of Adaptive EM-based Importance Sampling Algorithms for Efficient and Robust Posterior and Predictive Simulation," Tinbergen Institute Discussion Papers 11-004/4, Tinbergen Institute.
    10. Demos, Antonis & Sentana, Enrique, 1998. "Testing for GARCH effects: a one-sided approach," Journal of Econometrics, Elsevier, vol. 86(1), pages 97-127, June.
    11. Carnero, María Ángeles, 2001. "Outliers and conditional autoregressive heteroscedasticity in time series," DES - Working Papers. Statistics and Econometrics. WS ws010704, Universidad Carlos III de Madrid. Departamento de Estadística.
    12. Jin Lee, 2000. "One-Sided Testing for ARCH Effect Using Wavelets," Econometric Society World Congress 2000 Contributed Papers 1214, Econometric Society.
    13. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654.
    14. Bade, Alexander & Frahm, Gabriel & Jaekel, Uwe, 2008. "A general approach to Bayesian portfolio optimization," Discussion Papers in Econometrics and Statistics 1/08, University of Cologne, Institute of Econometrics and Statistics.
    15. Ali Alami & Eric Renault, 2001. "Risque de modèle de volatilité," CIRANO Working Papers 2001s-06, CIRANO.
    16. Alexander Bade & Gabriel Frahm & Uwe Jaekel, 2009. "A general approach to Bayesian portfolio optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(2), pages 337-356, October.
    17. Chen, Cathy W.S. & Gerlach, Richard & Wei, D.C.M., 2009. "Bayesian causal effects in quantiles: Accounting for heteroscedasticity," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1993-2007, April.
    18. Lee, Lung-fei, 1999. "Estimation of dynamic and ARCH Tobit models," Journal of Econometrics, Elsevier, vol. 92(2), pages 355-390, October.
    19. Liesenfeld, Roman, 1996. "Dynamic bivariate mixture models: Modeling the behavior of prices and trading volume," Tübinger Diskussionsbeiträge 78, University of Tübingen, School of Business and Economics.
    20. Duchesne, Pierre, 2006. "Testing for multivariate autoregressive conditional heteroskedasticity using wavelets," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2142-2163, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sbe:breart:v:18:y:1998:i:1:a:2843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Núcleo de Computação da FGV EPGE (email available below). General contact details of provider: https://edirc.repec.org/data/sbeeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.