IDEAS home Printed from https://ideas.repec.org/a/sae/somere/v43y2014i4p699-723.html
   My bibliography  Save this article

Panel Attrition

Author

Listed:
  • Peter Lugtig

Abstract

Attrition is the process of dropout from a panel study. Earlier studies into the determinants of attrition study respondents still in the survey and those who attrited at any given wave of data collection. In many panel surveys, the process of attrition is more subtle than being either in or out of the study. Respondents often miss out on one or more waves, but might return after that. They start off responding infrequently, but more often later in the course of the study. Using current analytical models, it is difficult to incorporate such response patterns in analyses of attrition. This article shows how to study attrition in a latent class framework. This allows the separation of different groups of respondents, that each follow a different and distinct process of attrition. Classifying attriting respondents enables us to formally test substantive theories of attrition and its effects on data accuracy more effectively.

Suggested Citation

  • Peter Lugtig, 2014. "Panel Attrition," Sociological Methods & Research, , vol. 43(4), pages 699-723, November.
  • Handle: RePEc:sae:somere:v:43:y:2014:i:4:p:699-723
    DOI: 10.1177/0049124113520305
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0049124113520305
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0049124113520305?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cheti Nicoletti & Franco Peracchi, 2005. "Survey response and survey characteristics: microlevel evidence from the European Community Household Panel," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(4), pages 763-781, November.
    2. John Fitzgerald & Peter Gottschalk & Robert Moffitt, 1998. "An Analysis of Sample Attrition in Panel Data: The Michigan Panel Study of Income Dynamics," Journal of Human Resources, University of Wisconsin Press, vol. 33(2), pages 251-299.
    3. Gilles Celeux & Gilda Soromenho, 1996. "An entropy criterion for assessing the number of clusters in a mixture model," Journal of Classification, Springer;The Classification Society, vol. 13(2), pages 195-212, September.
    4. Daniel H. Hill & Robert J. Willis, 2001. "Reducing Panel Attrition: A Search for Effective Policy Instruments," Journal of Human Resources, University of Wisconsin Press, vol. 36(3), pages 416-438.
    5. Noah Uhrig, S.C., 2008. "The nature and causes of attrition in the British Household Panel Study," ISER Working Paper Series 2008-05, Institute for Social and Economic Research.
    6. Cheti Nicoletti & Franco Peracchi & Vincenzo Atella, 2005. "Survey Response and Survey Characteristics: Micro-level Evidence from the European Commission Household Panel," CEIS Research Paper 64, Tor Vergata University, CEIS.
    7. Lee A. Lillard & Constantijn W. A. Panis, 1998. "Panel Attrition from the Panel Study of Income Dynamics: Household Income, Marital Status, and Mortality," Journal of Human Resources, University of Wisconsin Press, vol. 33(2), pages 437-457.
    8. Andrew M. Jones & Xander Koolman & Nigel Rice, 2006. "Health‐related non‐response in the British Household Panel Survey and European Community Household Panel: using inverse‐probability‐weighted estimators in non‐linear models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(3), pages 543-569, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adrian Chadi, 2019. "Dissatisfied with life or with being interviewed? Happiness and the motivation to participate in a survey," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 53(3), pages 519-553, October.
    2. Nicole Watson & Mark Wooden, 2011. "Re-engaging with Survey Non-respondents: The BHPS, SOEP and HILDA Survey Experience," Melbourne Institute Working Paper Series wp2011n02, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
    3. Andrew M. Jones & Xander Koolman & Nigel Rice, 2006. "Health‐related non‐response in the British Household Panel Survey and European Community Household Panel: using inverse‐probability‐weighted estimators in non‐linear models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(3), pages 543-569, July.
    4. Christopher J. Gerry & Georgios Papadopoulos, 2015. "Sample attrition in the RLMS, 2001–10," The Economics of Transition, The European Bank for Reconstruction and Development, vol. 23(2), pages 425-468, April.
    5. Kapteyn, Arie & Michaud, Pierre-Carl & Smith, James P. & van Soest, Arthur, 2006. "Effects of Attrition and Non-Response in the Health and Retirement Study," IZA Discussion Papers 2246, Institute of Labor Economics (IZA).
    6. Michael Fertig & Stefanie Schurer, 2007. "Earnings Assimilation of Immigrants in Germany: The Importance of Heterogeneity and Attrition Bias," SOEPpapers on Multidisciplinary Panel Data Research 30, DIW Berlin, The German Socio-Economic Panel (SOEP).
    7. Crossley, Thomas F. & Fisher, Paul & Low, Hamish, 2021. "The heterogeneous and regressive consequences of COVID-19: Evidence from high quality panel data," Journal of Public Economics, Elsevier, vol. 193(C).
    8. Michael Fertig & Stefanie Schurer, 2007. "Labour Market Outcomes of Immigrants in Germany – The Importance of Heterogeneity and Attrition Bias," Ruhr Economic Papers 0020, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
    9. Fertig, Michael & Schurer, Stefanie, 2007. "Labour Market Outcomes of Immigrants in Germany – The Importance of Heterogeneity and Attrition Bias," Ruhr Economic Papers 20, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    10. Sadig, Husam, 2014. "Non-response subgroup-tailored weighting: the choice of variables and the set of respondents used to estimate the weighting model," ISER Working Paper Series 2014-36, Institute for Social and Economic Research.
    11. Banks, James & Muriel, Alastair & Smith, James P., 2010. "Attrition and Health in Ageing Studies: Evidence from ELSA and HRS," IZA Discussion Papers 5161, Institute of Labor Economics (IZA).
    12. repec:zbw:rwirep:0020 is not listed on IDEAS
    13. Kapteyn, Arie & Michaud, Pierre-Carl & Smith, James P. & van Soest, Arthur, 2006. "Effects of Attrition and Non-Response in the Health and Retirement Study," IZA Discussion Papers 2246, Institute for the Study of Labor (IZA).
    14. Annamaria Bianchi & Silvia Biffignandi, 2019. "Social Indicators to Explain Response in Longitudinal Studies," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 141(3), pages 931-957, February.
    15. Sadig, Husam, 2014. "Weighting for non-monotonic response pattern in longitudinal surveys," ISER Working Paper Series 2014-34, Institute for Social and Economic Research.
    16. Sadig, Husam, 2014. "Unknown eligibility whilst weighting for non-response: the puzzle of who has died and who is still alive?," ISER Working Paper Series 2014-35, Institute for Social and Economic Research.
    17. Becchetti, Leonardo & Conzo, Pierluigi & Salustri, Francesco, 2017. "The impact of health expenditure on the number of chronic diseases," Health Policy, Elsevier, vol. 121(9), pages 955-962.
    18. Dmytro Hryshko, 2012. "Labor income profiles are not heterogeneous: Evidence from income growth rates," Quantitative Economics, Econometric Society, vol. 3(2), pages 177-209, July.
    19. Eric J. Tchetgen Tchetgen & Kathleen E. Wirth, 2017. "A general instrumental variable framework for regression analysis with outcome missing not at random," Biometrics, The International Biometric Society, vol. 73(4), pages 1123-1131, December.
    20. Hernández-Quevedo, Cristina & Jones, Andrew M. & Rice, Nigel, 2008. "Persistence in health limitations: A European comparative analysis," Journal of Health Economics, Elsevier, vol. 27(6), pages 1472-1488, December.
    21. Binder, Martin & Coad, Alex, 2013. "“I'm afraid I have bad news for you…” Estimating the impact of different health impairments on subjective well-being," Social Science & Medicine, Elsevier, vol. 87(C), pages 155-167.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:somere:v:43:y:2014:i:4:p:699-723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.