IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v238y2024i2p274-290.html
   My bibliography  Save this article

Combining first prediction time identification and time-series feature window for remaining useful life prediction of rolling bearings with limited data

Author

Listed:
  • Hai Li
  • Chaoqun Wang

Abstract

Limited data are common in the problem of remaining life prediction (RUL) of rolling bearings, and the distribution of degradation data of rolling bearings under different working conditions is quite different, which makes it difficult to predict the RUL of rolling bearings with limited data. To address this issue, this study combines first prediction time identification (FPT) and time-series feature window (TSFW) for predicting the RUL of rolling bearings with limited data. Firstly, the proper first prediction time is identified by a novel FPT identification method considering root mean square and Kurtosis simultaneously. Subsequently, to accurately capture the sequential characteristics of bearing degradation data, the TSFW is constructed and then adaptively compressed considering degradation factor that is derived mathematically. Based on this, this study employs multi-step ahead rolling prediction strategy with degradation factor from FPT to reveal the future degradation trend and then predict the bearing RUL. Finally, the feasibility and generalization of the proposed method under limited data is validated by carrying out several rolling bearing experiments, and the prediction errors for two representative bearings are 14.46% and 8.06%.

Suggested Citation

  • Hai Li & Chaoqun Wang, 2024. "Combining first prediction time identification and time-series feature window for remaining useful life prediction of rolling bearings with limited data," Journal of Risk and Reliability, , vol. 238(2), pages 274-290, April.
  • Handle: RePEc:sae:risrel:v:238:y:2024:i:2:p:274-290
    DOI: 10.1177/1748006X221147441
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X221147441
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X221147441?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrick Zschech & Kai Heinrich & Raphael Bink & Janis S. Neufeld, 2019. "Prognostic Model Development with Missing Labels," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(3), pages 327-343, June.
    2. Hu, Yang & Baraldi, Piero & Di Maio, Francesco & Zio, Enrico, 2015. "A particle filtering and kernel smoothing-based approach for new design component prognostics," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 19-31.
    3. Zhang, Ao & Wang, Zhihua & Bao, Rui & Liu, Chengrui & Wu, Qiong & Cao, Shihao, 2023. "A novel failure time estimation method for degradation analysis based on general nonlinear Wiener processes," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    4. Zhang, Jian-Xun & Hu, Chang-Hua & He, Xiao & Si, Xiao-Sheng & Liu, Yang & Zhou, Dong-Hua, 2017. "Lifetime prognostics for deteriorating systems with time-varying random jumps," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 338-350.
    5. Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.
    6. KarabaÄŸ, Oktay & Eruguz, Ayse Sena & Basten, Rob, 2020. "Integrated optimization of maintenance interventions and spare part selection for a partially observable multi-component system," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    7. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    8. Jahani, Salman & Zhou, Shiyu & Veeramani, Dharmaraj, 2021. "Stochastic prognostics under multiple time-varying environmental factors," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    9. Chang, Miaoxin & Huang, Xianzhen & Coolen, Frank PA & Coolen-Maturi, Tahani, 2023. "New reliability model for complex systems based on stochastic processes and survival signature," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1349-1364.
    10. Gupta, Nitin & Misra, Neeraj & Kumar, Somesh, 2015. "Stochastic comparisons of residual lifetimes and inactivity times of coherent systems with dependent identically distributed components," European Journal of Operational Research, Elsevier, vol. 240(2), pages 425-430.
    11. Zhang, Jian-Xun & Si, Xiao-Sheng & Du, Dang-Bo & Hu, Chang-Hua & Hu, Chen, 2020. "A novel iterative approach of lifetime estimation for standby systems with deteriorating spare parts," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    12. García Nieto, P.J. & García-Gonzalo, E. & Sánchez Lasheras, F. & de Cos Juez, F.J., 2015. "Hybrid PSO–SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 219-231.
    13. Qin, Shuidan & Wang, Bing Xing & Tsai, Tzong-Ru & Wang, Xiaofei, 2023. "The prediction of remaining useful lifetime for the Weibull k-out-of-n load-sharing system," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    14. Ondemir, Onder & Gupta, Surendra M., 2014. "A multi-criteria decision making model for advanced repair-to-order and disassembly-to-order system," European Journal of Operational Research, Elsevier, vol. 233(2), pages 408-419.
    15. Jin, Guang & Matthews, David E. & Zhou, Zhongbao, 2013. "A Bayesian framework for on-line degradation assessment and residual life prediction of secondary batteries inspacecraft," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 7-20.
    16. Costa, Nahuel & Sánchez, Luciano, 2022. "Variational encoding approach for interpretable assessment of remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    17. Jianxun Zhang & Xiao He & Xiaosheng Si & Changhua Hu & Donghua Zhou, 2017. "A Novel Multi-Phase Stochastic Model for Lithium-Ion Batteries’ Degradation with Regeneration Phenomena," Energies, MDPI, vol. 10(11), pages 1-24, October.
    18. Le Son, Khanh & Fouladirad, Mitra & Barros, Anne & Levrat, Eric & Iung, Benoît, 2013. "Remaining useful life estimation based on stochastic deterioration models: A comparative study," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 165-175.
    19. Gössinger, Ralf & Helmke, Hanna & Kaluzny, Michael, 2017. "Condition-based release of maintenance jobs in a decentralised production-maintenance system – An analysis of alternative stochastic approaches," International Journal of Production Economics, Elsevier, vol. 193(C), pages 528-537.
    20. Barbosa de Santis, Rodrigo & Silveira Gontijo, Tiago & Azevedo Costa, Marcelo, 2021. "Condition-based maintenance in hydroelectric plants: A systematic literature review," MPRA Paper 115912, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:238:y:2024:i:2:p:274-290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.