IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v238y2024i1p29-43.html
   My bibliography  Save this article

Ant colony optimisation of a community pharmacy dispensing process using Coloured Petri-Net simulation and UK pharmacy in-field data

Author

Listed:
  • Matthew Naybour
  • Rasa Remenyte-Prescott
  • Matthew Boyd

Abstract

There are 11,619 community pharmacies in England which dispense over 1 billion prescriptions each year, providing essential primary care to NHS (National Health Service) patients. These pharmacies are facing pressure from a number of sources including funding cuts and high demands on services, while trying to deliver the highest standards of care. This paper presents an optimisation of a Coloured Petri Net (CPN) community pharmacy simulation model using an Ant Colony Optimisation (ACO) method. The CPN method was proposed by Naybour et al . Quantitative data from UK community pharmacies was collected by the authors and incorporated into the CPN simulation model. The optimisation is made up of a choice of how many staff to employ, which prescription checking strategy to use, and which staff work pattern to implement. This method aims to provide decision makers with a set of optimal pharmacy configurations at different cost levels. This can help to support pharmacy safety, efficiency, and improve decision making processes. It has been demonstrated how reliability modelling techniques traditionally used in safety-critical industries, can be used to carry out safety and efficiency analyses of healthcare systems, such as dispensing processes in community pharmacies, illustrated in this contribution.

Suggested Citation

  • Matthew Naybour & Rasa Remenyte-Prescott & Matthew Boyd, 2024. "Ant colony optimisation of a community pharmacy dispensing process using Coloured Petri-Net simulation and UK pharmacy in-field data," Journal of Risk and Reliability, , vol. 238(1), pages 29-43, February.
  • Handle: RePEc:sae:risrel:v:238:y:2024:i:1:p:29-43
    DOI: 10.1177/1748006X221135459
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X221135459
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X221135459?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sally Brailsford & Walter Gutjahr & Marion Rauner & Wolfgang Zeppelzauer, 2007. "Combined Discrete-event Simulation and Ant Colony Optimisation Approach for Selecting Optimal Screening Policies for Diabetic Retinopathy," Computational Management Science, Springer, vol. 4(1), pages 59-83, January.
    2. K A Dowsland & J M Thompson, 2005. "Ant colony optimization for the examination scheduling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(4), pages 426-438, April.
    3. X-Y Li & Y P Aneja & F Baki, 2010. "An ant colony optimization metaheuristic for single-path multicommodity network flow problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(9), pages 1340-1355, September.
    4. D Martens & T Van Gestel & M De Backer & R Haesen & J Vanthienen & B Baesens, 2010. "Credit rating prediction using Ant Colony Optimization," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 561-573, April.
    5. Tatjana Stojković & Olaf Rose & Ronja Woltersdorf & Valentina Marinković & Tanja Manser & Ulrich Jaehde, 2018. "Prospective systemic risk analysis of the dispensing process in German community pharmacies," International Journal of Health Planning and Management, Wiley Blackwell, vol. 33(1), pages 320-332, January.
    6. K Katsaliaki & N Mustafee, 2011. "Applications of simulation within the healthcare context," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(8), pages 1431-1451, August.
    7. Delignette-Muller, Marie Laure & Dutang, Christophe, 2015. "fitdistrplus: An R Package for Fitting Distributions," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(i04).
    8. Ana R Vila-Parrish & Julie S Ivy & Russell E King & Steven R Abel, 2012. "Patient-based pharmaceutical inventory management: a two-stage inventory and production model for perishable products with Markovian demand," Health Systems, Taylor & Francis Journals, vol. 1(1), pages 69-83, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jesús Isaac Vázquez-Serrano & Rodrigo E. Peimbert-García & Leopoldo Eduardo Cárdenas-Barrón, 2021. "Discrete-Event Simulation Modeling in Healthcare: A Comprehensive Review," IJERPH, MDPI, vol. 18(22), pages 1-20, November.
    2. Schulte, Benedikt & Sachs, Anna-Lena, 2020. "The price-setting newsvendor with Poisson demand," European Journal of Operational Research, Elsevier, vol. 283(1), pages 125-137.
    3. Wen, Charlie & Eksioglu, Sandra Duni & Greenwood, Allen & Zhang, Shu, 2010. "Crane scheduling in a shipbuilding environment," International Journal of Production Economics, Elsevier, vol. 124(1), pages 40-50, March.
    4. Chen, Shang & He, Liang & Cao, Yinxuan & Wang, Runhong & Wu, Lianhai & Wang, Zhao & Zou, Yufeng & Siddique, Kadambot H.M. & Xiong, Wei & Liu, Manshuang & Feng, Hao & Yu, Qiang & Wang, Xiaoming & He, J, 2021. "Comparisons among four different upscaling strategies for cultivar genetic parameters in rainfed spring wheat phenology simulations with the DSSAT-CERES-Wheat model," Agricultural Water Management, Elsevier, vol. 258(C).
    5. Neeraj, & Panigrahi, Prasanta K., 2017. "Causality and correlations between BSE and NYSE indexes: A Janus faced relationship," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 284-313.
    6. Riva-Palacio, Alan & Leisen, Fabrizio, 2021. "Compound vectors of subordinators and their associated positive Lévy copulas," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    7. Minji Lee & Sun Ju Chung & Youngjo Lee & Sera Park & Jun-Gun Kwon & Dai Jin Kim & Donghwan Lee & Jung-Seok Choi, 2020. "Investigation of Correlated Internet and Smartphone Addiction in Adolescents: Copula Regression Analysis," IJERPH, MDPI, vol. 17(16), pages 1-12, August.
    8. Navonil Mustafee & Korina Katsaliaki & Paul Fishwick, 2014. "Exploring the modelling and simulation knowledge base through journal co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 2145-2159, March.
    9. Phillip M. Gurman & Tom Ross & Andreas Kiermeier, 2018. "Quantitative Microbial Risk Assessment of Salmonellosis from the Consumption of Australian Pork: Minced Meat from Retail to Burgers Prepared and Consumed at Home," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2625-2645, December.
    10. Deepa Mishra & Sameer Kumar & Elkafi Hassini, 2019. "Current trends in disaster management simulation modelling research," Annals of Operations Research, Springer, vol. 283(1), pages 1387-1411, December.
    11. Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.
    12. Sarra Ghaddab & Manel Kacem & Christian Peretti & Lotfi Belkacem, 2023. "Extreme severity modeling using a GLM-GPD combination: application to an excess of loss reinsurance treaty," Empirical Economics, Springer, vol. 65(3), pages 1105-1127, September.
    13. Daniel Garcia-Vicuña & Laida Esparza & Fermin Mallor, 2022. "Hospital preparedness during epidemics using simulation: the case of COVID-19," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(1), pages 213-249, March.
    14. William Montero Flores & Isadora França & Graciliano Galdino Alves dos Santos & Izildinha de Souza Miranda & Eric Fabricio Santos Moraes & Gustavo Hernández Sánchez & Sandra Dezuite Balieiro Da Silva , 2023. "Diametric Growth of a Forest under Reduced-Impact Logging in the Eastern Region of the Brazilian Amazon," Land, MDPI, vol. 12(3), pages 1-10, March.
    15. Tippong, Danuphon & Petrovic, Sanja & Akbari, Vahid, 2022. "A review of applications of operational research in healthcare coordination in disaster management," European Journal of Operational Research, Elsevier, vol. 301(1), pages 1-17.
    16. Kalanka P. Jayalath, 2021. "Fiducial Inference on the Right Censored Birnbaum–Saunders Data via Gibbs Sampler," Stats, MDPI, vol. 4(2), pages 1-15, May.
    17. Zubillaga, María & Skewes, Oscar & Soto, Nicolás & Rabinovich, Jorge E., 2018. "How density-dependence and climate affect guanaco population dynamics," Ecological Modelling, Elsevier, vol. 385(C), pages 189-196.
    18. J H Powell & N Mustafee, 2017. "Widening requirements capture with soft methods: an investigation of hybrid M&S studies in health care," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(10), pages 1211-1222, October.
    19. Nielsen, J.K. & Mueter, F.J. & Adkison, M.D. & Loher, T. & McDermott, S.F. & Seitz, A.C., 2019. "Effect of study area bathymetric heterogeneity on parameterization and performance of a depth-based geolocation model for demersal fishes," Ecological Modelling, Elsevier, vol. 402(C), pages 18-34.
    20. Antonello Maruotti & Antonio Punzo, 2021. "Initialization of Hidden Markov and Semi‐Markov Models: A Critical Evaluation of Several Strategies," International Statistical Review, International Statistical Institute, vol. 89(3), pages 447-480, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:238:y:2024:i:1:p:29-43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.