IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v237y2023i5p980-993.html
   My bibliography  Save this article

Prognostic considering missing data: An input output hidden Markov model based solution

Author

Listed:
  • Kamrul Islam Shahin
  • Christophe Simon
  • Philippe Weber
  • Aslak Johansen
  • Mikkel Baun Kjærgaard

Abstract

The remaining useful life of a system is unknown and uncertain due to the uncertainty of system failure. However, by monitoring the behaviour of the system, it is possible to predict the current health and also the near future health states. To make a correct prognostic, we need to understand the degradation process of similar systems from the historical data, which is often not easy to collect in huge amount because the degradation process is a slow progression. A complete sequence requires collecting data from the beginning of a system’s operation until its death or failure. However, in reality, most deployments will have to deal with missing data, misreading or sensor saturation. This paper works on handling the missing data for improving the model training by extracting as much information as possible even from the incomplete sequences. In this paper, we propose an IOHMM-based missing data processing method, which is shown to provide better results compared to the list deletion method. A bootstrap method is developed that resamples using replacement sequences picked by the learning algorithms. Two well-known learning algorithms: the Baum Welch and the forward-backward algorithm are adapted to handle the missing data. A numerical application is simulated to demonstrate the role of the proposed algorithm and the corresponding model performance in RUL prediction, which is the basis of the RUL management.

Suggested Citation

  • Kamrul Islam Shahin & Christophe Simon & Philippe Weber & Aslak Johansen & Mikkel Baun Kjærgaard, 2023. "Prognostic considering missing data: An input output hidden Markov model based solution," Journal of Risk and Reliability, , vol. 237(5), pages 980-993, October.
  • Handle: RePEc:sae:risrel:v:237:y:2023:i:5:p:980-993
    DOI: 10.1177/1748006X221119853
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X221119853
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X221119853?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ting Lin, 2010. "A comparison of multiple imputation with EM algorithm and MCMC method for quality of life missing data," Quality & Quantity: International Journal of Methodology, Springer, vol. 44(2), pages 277-287, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minh Hung Ho & Amélie Ponchet Durupt & Hai Canh Vu & Nassim Boudaoud & Arnaud Caracciolo & Sophie Sieg-Zieba & Yun Xu & Patrick Leduc, 2023. "Ensemble Learning for Multi-Label Classification with Unbalanced Classes: A Case Study of a Curing Oven in Glass Wool Production," Mathematics, MDPI, vol. 11(22), pages 1-24, November.
    2. Hamid Heidarian Miri & Jafar Hassanzadeh & Abdolreza Rajaeefard & Majid Mirmohammadkhani & Kambiz Ahmadi Angali, 2016. "Multiple Imputation to Correct for Nonresponse Bias: Application in Non-communicable Disease Risk Factors Survey," Global Journal of Health Science, Canadian Center of Science and Education, vol. 8(1), pages 133-133, January.
    3. Khaled Khatab & Maruf A Raheem & Benn Sartorius & Mubarak Ismail, 2019. "Prevalence and risk factors for child labour and violence against children in Egypt using Bayesian geospatial modelling with multiple imputation," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-20, May.
    4. Hanson, Rochelle F. & Saunders, Benjamin E. & Peer, Samuel O. & Ralston, Elizabeth & Moreland, Angela D. & Schoenwald, Sonja & Chapman, Jason, 2018. "Community-based learning collaboratives and participant reports of interprofessional collaboration, barriers to, and utilization of child trauma services," Children and Youth Services Review, Elsevier, vol. 94(C), pages 306-314.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:237:y:2023:i:5:p:980-993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.