IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v237y2023i5p947-957.html
   My bibliography  Save this article

Simulation-based dynamic probabilistic risk assessment of an internal flooding-initiated accident in nuclear power plant using THALES2 and RAPID

Author

Listed:
  • Kotaro Kubo
  • Xiaoyu Zheng
  • Yoichi Tanaka
  • Hitoshi Tamaki
  • Tomoyuki Sugiyama
  • Sunghyon Jang
  • Takashi Takata
  • Akira Yamaguchi

Abstract

Probabilistic risk assessment (PRA) is a method used to assess the risks associated with large and complex systems. However, the timing at which nuclear power plant structures, systems, and components are damaged is difficult to handle explicitly if the risk of an external event is evaluated using conventional PRA based on event trees and fault trees. A methodology coupling thermal-hydraulic analysis with external event simulations using Risk Assessment with Plant Interactive Dynamics (RAPID) is therefore proposed to overcome this limitation. A flood propagation model based on Bernoulli’s theorem was applied to represent internal flooding in the turbine building of the pressurized water reactor. Uncertainties were also taken into account, including the flow rate of the floodwater source and the failure criteria for the mitigation systems. The simulated recovery actions included the operator isolating the floodwater source and using a drainage pump; these actions were modeled using several simplifications. Overall, the results indicate that combining isolation and drainage can reduce the conditional core damage probability upon the occurrence of flooding by approximately 90%.

Suggested Citation

  • Kotaro Kubo & Xiaoyu Zheng & Yoichi Tanaka & Hitoshi Tamaki & Tomoyuki Sugiyama & Sunghyon Jang & Takashi Takata & Akira Yamaguchi, 2023. "Simulation-based dynamic probabilistic risk assessment of an internal flooding-initiated accident in nuclear power plant using THALES2 and RAPID," Journal of Risk and Reliability, , vol. 237(5), pages 947-957, October.
  • Handle: RePEc:sae:risrel:v:237:y:2023:i:5:p:947-957
    DOI: 10.1177/1748006X221091604
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X221091604
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X221091604?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rebollo, M.J. & Queral, C. & Jimenez, G. & Gomez-Magan, J. & Meléndez, E. & Sanchez-Perea, M., 2016. "Evaluation of the offsite dose contribution to the global risk in a Steam Generator Tube Rupture scenario," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 32-48.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cho, Jaehyun & Lee, Sang Hun & Bang, Young Suk & Lee, Suwon & Park, Soo Yong, 2022. "Exhaustive simulation approach for severe accident risk in nuclear power plants: OPR-1000 full-power internal events," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    2. Park, Jinkyun & Jung, Jae-Yoon & Heo, Gyunyoung & Kim, Yochan & Kim, Jaewhan & Cho, Jaehyun, 2018. "Application of a process mining technique to identifying information navigation characteristics of human operators working in a digital main control room – feasibility study," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 38-50.
    3. Maidana, Renan G. & Parhizkar, Tarannom & Gomola, Alojz & Utne, Ingrid B. & Mosleh, Ali, 2023. "Supervised dynamic probabilistic risk assessment: Review and comparison of methods," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    4. París, C. & Queral, C. & Mula, J. & Gómez-Magán, J. & Sánchez-Perea, M. & Meléndez, E. & Gil, J., 2019. "Quantitative risk reduction by means of recovery strategies," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 13-32.
    5. Francesco, Di Maio & Matteo, Fumagalli & Carlo, Guerini & Federico, Perotti & Enrico, Zio, 2021. "Time-dependent reliability analysis of the reactor building of a nuclear power plant for accounting of its aging and degradation," Reliability Engineering and System Safety, Elsevier, vol. 205(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:237:y:2023:i:5:p:947-957. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.