IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v237y2023i2p367-388.html
   My bibliography  Save this article

Toward a hybrid causal framework for autonomous vehicle safety analysis

Author

Listed:
  • Stephen Thomas
  • Katrina M Groth

Abstract

Autonomous Vehicles (AVs), also known as self-driving cars, are a potentially transformative technology, but developing and demonstrating AV safety remains an open question. AVs offer some unique challenges that stretch the limits of traditional safety engineering practices. Most current safety standards and methodologies in the AV industry were not originally intended for application to autonomous vehicles, and they have significant limitations and shortcomings. In this article, we analyze the literature to first build an argument that a new safety framework is needed for AVs. We then use the identified limitations of current methodologies as a basis to formulate a set of fundamental requirements that must be met by any proposed AV safety framework. We propose a new AV safety framework based on the Hybrid Causal Logic (HCL) methodology, which combines Event Sequence Diagrams (ESDs), Fault Tree Analysis (FTA), and Bayesian Networks (BNs). The HCL framework is developed at a conceptual level and then evaluated versus the identified fundamental requirements. To further illustrate how the framework may meet the requirements, a simple example of an AV perception system scenario is developed using the HCL framework and evaluated. The results demonstrate that the HCL framework provides an integrated approach that has the potential to satisfy more completely the fundamental requirements than the current methodologies.

Suggested Citation

  • Stephen Thomas & Katrina M Groth, 2023. "Toward a hybrid causal framework for autonomous vehicle safety analysis," Journal of Risk and Reliability, , vol. 237(2), pages 367-388, April.
  • Handle: RePEc:sae:risrel:v:237:y:2023:i:2:p:367-388
    DOI: 10.1177/1748006X211043310
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X211043310
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X211043310?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Luo, Pengcheng & Hu, Yang, 2013. "System risk evolution analysis and risk critical event identification based on event sequence diagram," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 36-44.
    2. Mohaghegh, Zahra & Kazemi, Reza & Mosleh, Ali, 2009. "Incorporating organizational factors into Probabilistic Risk Assessment (PRA) of complex socio-technical systems: A hybrid technique formalization," Reliability Engineering and System Safety, Elsevier, vol. 94(5), pages 1000-1018.
    3. Mkrtchyan, L. & Podofillini, L. & Dang, V.N., 2015. "Bayesian belief networks for human reliability analysis: A review of applications and gaps," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 1-16.
    4. Bjerga, Torbjørn & Aven, Terje & Zio, Enrico, 2016. "Uncertainty treatment in risk analysis of complex systems: The cases of STAMP and FRAM," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 203-209.
    5. Zhou, Jianfeng & Reniers, Genserik & Khakzad, Nima, 2016. "Application of event sequence diagram to evaluate emergency response actions during fire-induced domino effects," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 202-209.
    6. Groth, Katrina & Wang, Chengdong & Mosleh, Ali, 2010. "Hybrid causal methodology and software platform for probabilistic risk assessment and safety monitoring of socio-technical systems," Reliability Engineering and System Safety, Elsevier, vol. 95(12), pages 1276-1285.
    7. Groth, Katrina M. & Smith, Reuel & Moradi, Ramin, 2019. "A hybrid algorithm for developing third generation HRA methods using simulator data, causal models, and cognitive science," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    8. Rae, Andrew & Alexander, Rob & McDermid, John, 2014. "Fixing the cracks in the crystal ball: A maturity model for quantitative risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 125(C), pages 67-81.
    9. Ramos, M.A. & Thieme, Christoph A. & Utne, Ingrid B. & Mosleh, A., 2020. "Human-system concurrent task analysis for maritime autonomous surface ship operation and safety," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    10. Abílio Ramos, M. & López Droguett, E. & Mosleh, A. & Das Chagas Moura, M., 2020. "A human reliability analysis methodology for oil refineries and petrochemical plants operation: Phoenix-PRO qualitative framework," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    11. Kalra, Nidhi & Paddock, Susan M., 2016. "Driving to safety: How many miles of driving would it take to demonstrate autonomous vehicle reliability?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 182-193.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bauranov, Aleksandar & Rakas, Jasenka, 2024. "Bayesian network model of aviation safety: Impact of new communication technologies on mid-air collisions," Reliability Engineering and System Safety, Elsevier, vol. 243(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Podofillini, Luca & Reer, Bernhard & Dang, Vinh N., 2021. "Analysis of recent operational events involving inappropriate actions: influencing factors and root causes," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    3. Pence, Justin & Sakurahara, Tatsuya & Zhu, Xuefeng & Mohaghegh, Zahra & Ertem, Mehmet & Ostroff, Cheri & Kee, Ernie, 2019. "Data-theoretic methodology and computational platform to quantify organizational factors in socio-technical risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 240-260.
    4. Ekanem, Nsimah & Mosleh, Ali & Shen, Song-Hua & Ramos, Marilia, 2024. "Phoenix–A model-based human reliability analysis methodology: Data sources and quantitative analysis procedure," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    5. Morais, Caroline & Estrada-Lugo, Hector Diego & Tolo, Silvia & Jacques, Tiago & Moura, Raphael & Beer, Michael & Patelli, Edoardo, 2022. "Robust data-driven human reliability analysis using credal networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    6. Abrishami, Shokoufeh & Khakzad, Nima & Hosseini, Seyed Mahmoud, 2020. "A data-based comparison of BN-HRA models in assessing human error probability: An offshore evacuation case study," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    7. Zhou, Jianfeng & Reniers, Genserik & Khakzad, Nima, 2016. "Application of event sequence diagram to evaluate emergency response actions during fire-induced domino effects," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 202-209.
    8. Justin Pence & Zahra Mohaghegh, 2020. "A Discourse on the Incorporation of Organizational Factors into Probabilistic Risk Assessment: Key Questions and Categorical Review," Risk Analysis, John Wiley & Sons, vol. 40(6), pages 1183-1211, June.
    9. Paglioni, Vincent P. & Groth, Katrina M., 2022. "Dependency definitions for quantitative human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    10. Maturana, Marcos Coelho & Martins, Marcelo Ramos & Frutuoso e Melo, Paulo Fernando Ferreira, 2021. "Application of a quantitative human performance model to the operational procedure design of a fuel storage pool cooling system," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    11. Zhao, Yunfei & Smidts, Carol, 2021. "CMS-BN: A cognitive modeling and simulation environment for human performance assessment, part 1 — methodology," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    12. Abreu, Danilo T.M.P. & Maturana, Marcos C. & Droguett, Enrique Lopez & Martins, Marcelo R., 2022. "Human reliability analysis of conventional maritime pilotage operations supported by a prospective model," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    13. Mkrtchyan, L. & Podofillini, L. & Dang, V.N., 2015. "Bayesian belief networks for human reliability analysis: A review of applications and gaps," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 1-16.
    14. Farcasiu, M. & Prisecaru, I., 2014. "MMOSA – A new approach of the human and organizational factor analysis in PSA," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 91-98.
    15. Khastgir, Siddartha & Brewerton, Simon & Thomas, John & Jennings, Paul, 2021. "Systems Approach to Creating Test Scenarios for Automated Driving Systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    16. Kim, Yochan & Park, Jinkyun & Jung, Wondea, 2017. "A quantitative measure of fitness for duty and work processes for human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 595-601.
    17. You, Qidong & Guo, Jianbin & Zeng, Shengkui & Che, Haiyang, 2024. "A dynamic Bayesian network based reliability assessment method for short-term multi-round situation awareness considering round dependencies," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    18. Zhou, Jian-Lan & Lei, Yi, 2020. "A slim integrated with empirical study and network analysis for human error assessment in the railway driving process," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    19. Li, Jue & Li, Heng & Wang, Fan & Cheng, Andy S.K. & Yang, Xincong & Wang, Hongwei, 2021. "Proactive analysis of construction equipment operators’ hazard perception error based on cognitive modeling and a dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    20. Al-Douri, Ahmad & Levine, Camille S. & Groth, Katrina M., 2023. "Identifying human failure events (HFEs) for external hazard probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 235(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:237:y:2023:i:2:p:367-388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.