IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v227y2013i5p534-539.html
   My bibliography  Save this article

Advancement in living probabilistic safety assessment to increase safety of nuclear power plants

Author

Listed:
  • Muhammad Zubair
  • Gyunyoung Heo

Abstract

Among the energy resources, the energy obtained from nuclear power plants is very important for the prosperity of any country. Living probabilistic safety assessment is a growing field that provides a high level of safety for nuclear power plants. Living probabilistic safety assessment consists of different techniques, among them this article presents a method to update reliability data. This method is based on Binomial likelihood function and its conjugate beta distribution for demand failure probability, and Poisson likelihood function and its conjugate gamma distribution for operational failure rate. The method uses generic data for beta and gamma prior distribution, which is updated by using the reliability data update method. Reliability data update is a computer-based program used to update nuclear power plant data according to changing conditions. By updating the living probabilistic safety assessment it is possible to get an online risk monitor system that can be helpful in severe accident conditions, as in Fukushima accident, to make the man–machine system friendly.

Suggested Citation

  • Muhammad Zubair & Gyunyoung Heo, 2013. "Advancement in living probabilistic safety assessment to increase safety of nuclear power plants," Journal of Risk and Reliability, , vol. 227(5), pages 534-539, October.
  • Handle: RePEc:sae:risrel:v:227:y:2013:i:5:p:534-539
    DOI: 10.1177/1748006X13485192
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X13485192
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X13485192?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carazas, F.G. & Souza, G.F.M., 2010. "Risk-based decision making method for maintenance policy selection of thermal power plant equipment," Energy, Elsevier, vol. 35(2), pages 964-975.
    2. Jiang, Xiaomo & Mahadevan, Sankaran, 2007. "Bayesian risk-based decision method for model validation under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 707-718.
    3. Majdara, Aref & Nematollahi, Mohammad Reza, 2008. "Development and application of a Risk Assessment Tool," Reliability Engineering and System Safety, Elsevier, vol. 93(8), pages 1130-1137.
    4. Ching, Jianye & Leu, Sou-Sen, 2009. "Bayesian updating of reliability of civil infrastructure facilities based on condition-state data and fault-tree model," Reliability Engineering and System Safety, Elsevier, vol. 94(12), pages 1962-1974.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Aihua & Chen, Ke & Huang, Xiaofei & Li, Didi & Zhang, Xiaochun, 2021. "Dynamic risk assessment model of buried gas pipelines based on system dynamics," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    2. Xu, Gaowei & Azhari, Fae, 2022. "Data-driven optimization of repair schemes and inspection intervals for highway bridges," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    3. Jiang, Xiaomo & Mahadevan, Sankaran, 2009. "Bayesian structural equation modeling method for hierarchical model validation," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 796-809.
    4. Rediske, Graciele & Michels, Leandro & Siluk, Julio Cezar Mairesse & Rigo, Paula Donaduzzi & Rosa, Carmen Brum & Lima, Andrei Cunha, 2024. "A proposed set of indicators for evaluating the performance of the operation and maintenance of photovoltaic plants," Applied Energy, Elsevier, vol. 354(PA).
    5. Gomes, Wellison J.S. & Beck, André T. & Haukaas, Terje, 2013. "Optimal inspection planning for onshore pipelines subject to external corrosion," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 18-27.
    6. Tang, Yang & Liu, Qingyou & Jing, Jiajia & Yang, Yan & Zou, Zhengwei, 2017. "A framework for identification of maintenance significant items in reliability centered maintenance," Energy, Elsevier, vol. 118(C), pages 1295-1303.
    7. Ao, Dan & Hu, Zhen & Mahadevan, Sankaran, 2017. "Design of validation experiments for life prediction models," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 22-33.
    8. Martyna Tomala & Andrzej Rusin & Adam Wojaczek, 2020. "Risk-Based Planning of Diagnostic Testing of Turbines Operating with Increased Flexibility," Energies, MDPI, vol. 13(13), pages 1-16, July.
    9. Pinciroli, Luca & Baraldi, Piero & Zio, Enrico, 2023. "Maintenance optimization in industry 4.0," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    10. Arthur H.A. Melani & Carlos A. Murad & Adherbal Caminada Netto & Gilberto F.M. Souza & Silvio I. Nabeta, 2019. "Maintenance Strategy Optimization of a Coal-Fired Power Plant Cooling Tower through Generalized Stochastic Petri Nets," Energies, MDPI, vol. 12(10), pages 1-28, May.
    11. Bodda, Saran Srikanth & Gupta, Abhinav & Dinh, Nam, 2020. "Enhancement of risk informed validation framework for external hazard scenario," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    12. Scholtens, Bert & Boersen, Arieke, 2011. "Stocks and energy shocks: The impact of energy accidents on stock market value," Energy, Elsevier, vol. 36(3), pages 1698-1702.
    13. Yuyama, Ayumi & Kajitani, Yoshio & Shoji, Gaku, 2018. "Simulation of operational reliability of thermal power plants during a power crisis: Are we underestimating power shortage risk?," Applied Energy, Elsevier, vol. 231(C), pages 901-913.
    14. Saleh, J.H. & Marais, K.B. & Bakolas, E. & Cowlagi, R.V., 2010. "Highlights from the literature on accident causation and system safety: Review of major ideas, recent contributions, and challenges," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1105-1116.
    15. Park, Chan Y. & Kim, Nam H. & Haftka, Raphael T., 2014. "How coupon and element tests reduce conservativeness in element failure prediction," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 123-136.
    16. Pei, Liang & Chen, Chen & He, Kun & Lu, Xiang, 2022. "System reliability of a gravity dam-foundation system using Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    17. Zhou, Dengji & Zhang, Huisheng & Weng, Shilie, 2014. "A novel prognostic model of performance degradation trend for power machinery maintenance," Energy, Elsevier, vol. 78(C), pages 740-746.
    18. Wang, Chong & Matthies, Hermann G., 2019. "Novel model calibration method via non-probabilistic interval characterization and Bayesian theory," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 84-92.
    19. Li, Wanhong & Liu, Guangzhong, 2022. "Dynamic failure mode analysis approach based on an improved Taguchi process capability index," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    20. Jiang, Xiaomo & Yuan, Yong & Liu, Xian, 2013. "Bayesian inference method for stochastic damage accumulation modeling," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 126-138.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:227:y:2013:i:5:p:534-539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.