IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v226y2012i6p602-623.html
   My bibliography  Save this article

Adaptive condition-based maintenance decision framework for deteriorating systems operating under variable environment and uncertain condition monitoring

Author

Listed:
  • Khac Tuan Huynh
  • Anne Barros
  • Christophe Bérenguer

Abstract

The present article deals with the efficient use of different types of monitoring information in optimizing condition-based maintenance decision making for a deteriorating system operating under variable environment. The degradation phenomenon of a system is the fatigue crack growth that is modeled by a physics-based stochastic process. The environment process is assumed to be modeled by a time-homogenous Markov chain with finite state space. We suppose that the environmental condition is observed perfectly, while the crack depth can be assessed imperfectly through a non-destructive ultrasonic technique. As such, two kinds of indirect information are available on the system at each inspection time: environmental covariate and diagnostic covariate. Based on this set of information, two condition-based maintenance strategies adaptive to environmental conditions are developed. In the first one, the adaptation scheme is time-based, while in the second, it is condition-based. These maintenance strategies are compared one with another and to a classical non-adaptive one to point out the performances of each adaptation scheme and hence the appreciation of using different information sources in maintenance decision making.

Suggested Citation

  • Khac Tuan Huynh & Anne Barros & Christophe Bérenguer, 2012. "Adaptive condition-based maintenance decision framework for deteriorating systems operating under variable environment and uncertain condition monitoring," Journal of Risk and Reliability, , vol. 226(6), pages 602-623, December.
  • Handle: RePEc:sae:risrel:v:226:y:2012:i:6:p:602-623
    DOI: 10.1177/1748006X12465718
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X12465718
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X12465718?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cadini, F. & Zio, E. & Avram, D., 2009. "Model-based Monte Carlo state estimation for condition-based component replacement," Reliability Engineering and System Safety, Elsevier, vol. 94(3), pages 752-758.
    2. Zio, Enrico & Peloni, Giovanni, 2011. "Particle filtering prognostic estimation of the remaining useful life of nonlinear components," Reliability Engineering and System Safety, Elsevier, vol. 96(3), pages 403-409.
    3. Khac Tuan Huynh & Anne Barros & Christophe Bérenguer & Inma T. Castro, 2011. "A periodic inspection and replacement policy for systems subject to competing failure modes due to degradation and traumatic events," Post-Print hal-00790728, HAL.
    4. Huynh, K.T. & Barros, A. & Bérenguer, C. & Castro, I.T., 2011. "A periodic inspection and replacement policy for systems subject to competing failure modes due to degradation and traumatic events," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 497-508.
    5. Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.
    6. Myötyri, E. & Pulkkinen, U. & Simola, K., 2006. "Application of stochastic filtering for lifetime prediction," Reliability Engineering and System Safety, Elsevier, vol. 91(2), pages 200-208.
    7. van Noortwijk, J.M. & van der Weide, J.A.M., 2008. "Applications to continuous-time processes of computational techniques for discrete-time renewal processes," Reliability Engineering and System Safety, Elsevier, vol. 93(12), pages 1853-1860.
    8. Ponchet, Amélie & Fouladirad, Mitra & Grall, Antoine, 2010. "Assessment of a maintenance model for a multi-deteriorating mode system," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1244-1254.
    9. Barker, C.T. & Newby, M.J., 2009. "Optimal non-periodic inspection for a multivariate degradation model," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 33-43.
    10. Deloux, E. & Castanier, B. & Bérenguer, C., 2009. "Predictive maintenance policy for a gradually deteriorating system subject to stress," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 418-431.
    11. Wenbin Wang, 2008. "Condition-based Maintenance Modelling," Springer Series in Reliability Engineering, in: Complex System Maintenance Handbook, chapter 5, pages 111-131, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huynh, K.T. & Grall, A. & Bérenguer, C., 2017. "Assessment of diagnostic and prognostic condition indices for efficient and robust maintenance decision-making of systems subject to stress corrosion cracking," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 237-254.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    2. Hai-Kun Wang & Yan-Feng Li & Yu Liu & Yuan-Jian Yang & Hong-Zhong Huang, 2015. "Remaining useful life estimation under degradation and shock damage," Journal of Risk and Reliability, , vol. 229(3), pages 200-208, June.
    3. Huynh, K.T. & Grall, A. & Bérenguer, C., 2017. "Assessment of diagnostic and prognostic condition indices for efficient and robust maintenance decision-making of systems subject to stress corrosion cracking," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 237-254.
    4. Keedy, Elias & Feng, Qianmei, 2012. "A physics-of-failure based reliability and maintenance modeling framework for stent deployment and operation," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 94-101.
    5. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    6. Zio, Enrico & Compare, Michele, 2013. "Evaluating maintenance policies by quantitative modeling and analysis," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 53-65.
    7. Nguyen, Khanh T. P. & Do, Phuc & Huynh, Khac Tuan & Bérenguer, Christophe & Grall, Antoine, 2019. "Joint optimization of monitoring quality and replacement decisions in condition-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 177-195.
    8. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    9. Srivastav, Himanshu & Lundteigen, Mary Ann & Barros, Anne, 2021. "Introduction of degradation modeling in qualification of the novel subsea technology," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    10. Hajipour, Yassin & Taghipour, Sharareh, 2016. "Non-periodic inspection optimization of multi-component and k-out-of-m systems," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 228-243.
    11. Fang, Xiaolei & Zhou, Rensheng & Gebraeel, Nagi, 2015. "An adaptive functional regression-based prognostic model for applications with missing data," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 266-274.
    12. Zhang, Aibo & Zhang, Tieling & Barros, Anne & Liu, Yiliu, 2020. "Optimization of maintenances following proof tests for the final element of a safety-instrumented system," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    13. Huynh, K.T., 2021. "An adaptive predictive maintenance model for repairable deteriorating systems using inverse Gaussian degradation process," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    14. Compare, Michele & Bellani, Luca & Zio, Enrico, 2019. "Optimal allocation of prognostics and health management capabilities to improve the reliability of a power transmission network," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 164-180.
    15. Chiachío, Manuel & Chiachío, Juan & Sankararaman, Shankar & Goebel, Kai & Andrews, John, 2017. "A new algorithm for prognostics using Subset Simulation," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 189-199.
    16. Jiang, Xiuhong & Duan, Fuhai & Tian, Heng & Wei, Xuedong, 2015. "Optimization of reliability centered predictive maintenance scheme for inertial navigation system," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 208-217.
    17. Fauriat, William & Zio, Enrico, 2020. "Optimization of an aperiodic sequential inspection and condition-based maintenance policy driven by value of information," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    18. Baraldi, Piero & Mangili, Francesca & Zio, Enrico, 2013. "Investigation of uncertainty treatment capability of model-based and data-driven prognostic methods using simulated data," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 94-108.
    19. Lee, Juseong & Mitici, Mihaela, 2022. "Multi-objective design of aircraft maintenance using Gaussian process learning and adaptive sampling," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    20. Caballé, N.C. & Castro, I.T. & Pérez, C.J. & Lanza-Gutiérrez, J.M., 2015. "A condition-based maintenance of a dependent degradation-threshold-shock model in a system with multiple degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 98-109.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:226:y:2012:i:6:p:602-623. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.