IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v222y2008i4p713-720.html
   My bibliography  Save this article

Bayesian reliability applications of a combined lifecycle failure distribution

Author

Listed:
  • D Briand
  • A V Huzurbazar

Abstract

This research seeks to better understand how to update sectional time-to-failure (TTF) distributions, such as the Sandia National Laboratories' developed CoMBined Lifecycle (CMBL) distribution, when new operational TTF data become available. With a bathtub-shaped hazard function, the CMBL probability density function provides an application-friendly method for characterizing a component's failure or lifecycle distribution. Its five parameters are chosen specifically to make it relatively easy to elicit the probability of failure distribution from subject matter experts and limited data. Once a characterization of the component?s lifecycle in terms of failure probability is established, a methodology for how to update that characterization based on the availability of new operational failure data is required. The updating process presented here uses a Bayesian changepoint methodology to return updated CMBL distribution parameters based on new operational TTF data modelled as a Poisson process. In this methodology, the changepoints are determined first, and when combined with the counts of the TTF data, provide enough information to estimate the remaining CMBL distribution parameters. The method developed in this effort for updating the CMBL distribution and other TTF distributions should prove valuable in optimizing large scale system-of-systems supply/repair chain models.

Suggested Citation

  • D Briand & A V Huzurbazar, 2008. "Bayesian reliability applications of a combined lifecycle failure distribution," Journal of Risk and Reliability, , vol. 222(4), pages 713-720, December.
  • Handle: RePEc:sae:risrel:v:222:y:2008:i:4:p:713-720
    DOI: 10.1243/1748006XJRR157
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1243/1748006XJRR157
    Download Restriction: no

    File URL: https://libkey.io/10.1243/1748006XJRR157?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. D. A. Stephens, 1994. "Bayesian Retrospective Multiple‐Changepoint Identification," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(1), pages 159-178, March.
    2. Bradley P. Carlin & Alan E. Gelfand & Adrian F. M. Smith, 1992. "Hierarchical Bayesian Analysis of Changepoint Problems," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 389-405, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng, Weiwen & Huang, Hong-Zhong & Li, Yanfeng & Zuo, Ming J. & Xie, Min, 2013. "Life cycle reliability assessment of new products—A Bayesian model updating approach," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 109-119.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiara Lattanzi & Manuele Leonelli, 2019. "A changepoint approach for the identification of financial extreme regimes," Papers 1902.09205, arXiv.org.
    2. Lindeløv, Jonas Kristoffer, 2020. "mcp: An R Package for Regression With Multiple Change Points," OSF Preprints fzqxv, Center for Open Science.
    3. Ardia, David & Dufays, Arnaud & Ordás Criado, Carlos, 2023. "Linking Frequentist and Bayesian Change-Point Methods," MPRA Paper 119486, University Library of Munich, Germany.
    4. Simon C. Smith, 2020. "Equity premium prediction and structural breaks," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 25(3), pages 412-429, July.
    5. Ospina-Forero, Luis & Granados, Oscar M., 2023. "A network analysis of the structure and dynamics of FX derivatives markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    6. Fitzpatrick, Matthew, 2014. "Geometric ergodicity of the Gibbs sampler for the Poisson change-point model," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 55-61.
    7. Owyang, Michael T. & Piger, Jeremy & Wall, Howard J., 2008. "A state-level analysis of the Great Moderation," Regional Science and Urban Economics, Elsevier, vol. 38(6), pages 578-589, November.
    8. Ruggieri, Eric & Antonellis, Marcus, 2016. "An exact approach to Bayesian sequential change point detection," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 71-86.
    9. Michael W. Robbins & Colin M. Gallagher & Robert B. Lund, 2016. "A General Regression Changepoint Test for Time Series Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 670-683, April.
    10. DAVID E. ALLEN & MICHAEL McALEER & ROBERT J. POWELL & ABHAY K. SINGH, 2018. "Non-Parametric Multiple Change Point Analysis Of The Global Financial Crisis," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 1-23, June.
    11. Ľluboš Pástor & Robert F. Stambaugh, 2001. "The Equity Premium and Structural Breaks," Journal of Finance, American Finance Association, vol. 56(4), pages 1207-1239, August.
    12. Gordon, Stephen & Bélanger, Gilles, 1996. "Échantillonnage de Gibbs et autres applications économétriques des chaînes markoviennes," L'Actualité Economique, Société Canadienne de Science Economique, vol. 72(1), pages 27-49, mars.
    13. Gary M. Koop & Simon M. Potter, 2004. "Forecasting and Estimating Multiple Change-point Models with an Unknown Number of Change-points," Discussion Papers in Economics 04/31, Division of Economics, School of Business, University of Leicester.
    14. Lu Shaochuan, 2020. "Bayesian multiple changepoints detection for Markov jump processes," Computational Statistics, Springer, vol. 35(3), pages 1501-1523, September.
    15. Li Zhaoyuan & Tian Maozai, 2017. "Detecting Change-Point via Saddlepoint Approximations," Journal of Systems Science and Information, De Gruyter, vol. 5(1), pages 48-73, February.
    16. Rosalia Condorelli, 2013. "A Bayesian analysis of suicide data," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(2), pages 1143-1161, February.
    17. Eric F. Lock & Nidhi Kohli & Maitreyee Bose, 2018. "Detecting Multiple Random Changepoints in Bayesian Piecewise Growth Mixture Models," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 733-750, September.
    18. M. Hashem Pesaran & Davide Pettenuzzo & Allan Timmermann, 2006. "Forecasting Time Series Subject to Multiple Structural Breaks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 73(4), pages 1057-1084.
    19. R. Rotondi & E. Garavaglia, 2002. "Statistical Analysis of the Completeness of a Seismic Catalogue," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 25(3), pages 245-258, March.
    20. Griffin, J.E. & Steel, M.F.J., 2011. "Stick-breaking autoregressive processes," Journal of Econometrics, Elsevier, vol. 162(2), pages 383-396, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:222:y:2008:i:4:p:713-720. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.