IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v43y2023i5p576-586.html
   My bibliography  Save this article

Deceased Donor Kidney Transplantation for Older Transplant Candidates: A New Microsimulation Model for Determining Risks and Benefits

Author

Listed:
  • Matthew B. Kaufmann

    (Stanford Health Policy, Department of Health Policy, School of Medicine and Center for Health Policy, Freeman Spogli Institute, Stanford University, Stanford, CA, USA)

  • Jane C. Tan

    (Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA)

  • Glenn M. Chertow

    (Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA)

  • Jeremy D. Goldhaber-Fiebert

    (Stanford Health Policy, Department of Health Policy, School of Medicine and Center for Health Policy, Freeman Spogli Institute, Stanford University, Stanford, CA, USA)

Abstract

Background Under the current US kidney allocation system, older candidates receive a disproportionately small share of deceased donor kidneys despite a reserve of potentially usable kidneys that could shorten their wait times. To consider potential health gains from increasing access to kidneys for these candidates, we developed and calibrated a microsimulation model of the transplantation process and long-term outcomes for older deceased donor kidney transplant candidates. Methods We estimated risk equations for transplant outcomes using the Scientific Registry of Transplant Recipients (SRTR), which contains data on all US transplants (2010–2019). A microsimulation model combined these equations to account for competing events. We calibrated the model to key transplant outcomes and used acceptance sampling, retaining the best-fitting 100 parameter sets. We then examined life expectancy gains from allocating kidneys even of lower quality across patient subgroups defined by age and designated race/ethnicity. Results The best-fitting 100 parameter sets (among 4,000,000 sampled) enabled our model to closely match key transplant outcomes. The model demonstrated clear survival benefits for those who receive a deceased donor kidney, even a lower quality one, compared with remaining on the waitlist where there is a risk of removal. The expected gain in survival from receiving a lower quality donor kidney was consistent gains across age and race/ethnic subgroups. Limitations Limited available data on socioeconomic factors. Conclusions Our microsimulation model accurately replicates a range of key kidney transplant outcomes among older candidates and demonstrates that older candidates may derive substantial benefits from transplantation with lower quality kidneys. This model can be used to evaluate policies that have been proposed to address concerns that the current system disincentivizes deceased donor transplants for older patients. Highlights The microsimulation model was consistent with the data after calibration and accurately simulated the transplantation process for older deceased donor kidney transplant candidates. There are clear survival benefits for older transplant candidates who receive deceased donor kidneys, even lower quality ones, compared with remaining on the waitlist. This model can be used to evaluate policies aimed at increasing transplantation among older candidates.

Suggested Citation

  • Matthew B. Kaufmann & Jane C. Tan & Glenn M. Chertow & Jeremy D. Goldhaber-Fiebert, 2023. "Deceased Donor Kidney Transplantation for Older Transplant Candidates: A New Microsimulation Model for Determining Risks and Benefits," Medical Decision Making, , vol. 43(5), pages 576-586, July.
  • Handle: RePEc:sae:medema:v:43:y:2023:i:5:p:576-586
    DOI: 10.1177/0272989X231172169
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X231172169
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X231172169?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marie Laure Delignette-Muller & Christophe Dutang, 2015. "fitdistrplus : An R Package for Fitting Distributions," Post-Print hal-01616147, HAL.
    2. Delignette-Muller, Marie Laure & Dutang, Christophe, 2015. "fitdistrplus: An R Package for Fitting Distributions," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(i04).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schulte, Benedikt & Sachs, Anna-Lena, 2020. "The price-setting newsvendor with Poisson demand," European Journal of Operational Research, Elsevier, vol. 283(1), pages 125-137.
    2. Chen, Shang & He, Liang & Cao, Yinxuan & Wang, Runhong & Wu, Lianhai & Wang, Zhao & Zou, Yufeng & Siddique, Kadambot H.M. & Xiong, Wei & Liu, Manshuang & Feng, Hao & Yu, Qiang & Wang, Xiaoming & He, J, 2021. "Comparisons among four different upscaling strategies for cultivar genetic parameters in rainfed spring wheat phenology simulations with the DSSAT-CERES-Wheat model," Agricultural Water Management, Elsevier, vol. 258(C).
    3. Riva-Palacio, Alan & Leisen, Fabrizio, 2021. "Compound vectors of subordinators and their associated positive Lévy copulas," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    4. Minji Lee & Sun Ju Chung & Youngjo Lee & Sera Park & Jun-Gun Kwon & Dai Jin Kim & Donghwan Lee & Jung-Seok Choi, 2020. "Investigation of Correlated Internet and Smartphone Addiction in Adolescents: Copula Regression Analysis," IJERPH, MDPI, vol. 17(16), pages 1-12, August.
    5. Phillip M. Gurman & Tom Ross & Andreas Kiermeier, 2018. "Quantitative Microbial Risk Assessment of Salmonellosis from the Consumption of Australian Pork: Minced Meat from Retail to Burgers Prepared and Consumed at Home," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2625-2645, December.
    6. Sarra Ghaddab & Manel Kacem & Christian Peretti & Lotfi Belkacem, 2023. "Extreme severity modeling using a GLM-GPD combination: application to an excess of loss reinsurance treaty," Empirical Economics, Springer, vol. 65(3), pages 1105-1127, September.
    7. Kalanka P. Jayalath, 2021. "Fiducial Inference on the Right Censored Birnbaum–Saunders Data via Gibbs Sampler," Stats, MDPI, vol. 4(2), pages 1-15, May.
    8. Zubillaga, María & Skewes, Oscar & Soto, Nicolás & Rabinovich, Jorge E., 2018. "How density-dependence and climate affect guanaco population dynamics," Ecological Modelling, Elsevier, vol. 385(C), pages 189-196.
    9. Nielsen, J.K. & Mueter, F.J. & Adkison, M.D. & Loher, T. & McDermott, S.F. & Seitz, A.C., 2019. "Effect of study area bathymetric heterogeneity on parameterization and performance of a depth-based geolocation model for demersal fishes," Ecological Modelling, Elsevier, vol. 402(C), pages 18-34.
    10. Antonello Maruotti & Antonio Punzo, 2021. "Initialization of Hidden Markov and Semi‐Markov Models: A Critical Evaluation of Several Strategies," International Statistical Review, International Statistical Institute, vol. 89(3), pages 447-480, December.
    11. Taleb-Berrouane, Mohammed & Khan, Faisal & Amyotte, Paul, 2020. "Bayesian Stochastic Petri Nets (BSPN) - A new modelling tool for dynamic safety and reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    12. Fezzi, Carlo & Menapace, Luisa & Raffaelli, Roberta, 2021. "Estimating risk preferences integrating insurance choices with subjective beliefs," European Economic Review, Elsevier, vol. 135(C).
    13. Pongnumkul, Suchit & Motohashi, Kazuyuki, 2018. "A bipartite fitness model for online music streaming services," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1125-1137.
    14. Gzara, Fatma & Elhedhli, Samir & Yildiz, Burak C., 2020. "The Pallet Loading Problem: Three-dimensional bin packing with practical constraints," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1062-1074.
    15. Lehtomaa, Jaakko & Resnick, Sidney I., 2020. "Asymptotic independence and support detection techniques for heavy-tailed multivariate data," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 262-277.
    16. Xing Zheng Wu & Chen Zhe Ma & Rui-kai Wang & Wei Chao Li, 2023. "Development of environmental contours from rainfall intensity and duration data for slopes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 1001-1027, March.
    17. Nascimento, Marcela C. & Husson, Berengere & Guillet, Lilia & Pedersen, Torstein, 2023. "Modelling the spatial shifts of functional groups in the Barents Sea using a climate-driven spatial food web model," Ecological Modelling, Elsevier, vol. 481(C).
    18. Yasin Khadem Charvadeh & Grace Y. Yi & Yuan Bian & Wenqing He, 2022. "Is 14-Days a Sensible Quarantine Length for COVID-19? Examinations of Some Associated Issues with a Case Study of COVID-19 Incubation Times," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(1), pages 175-190, April.
    19. Andrea Ferrantelli & Helena Kuivjõgi & Jarek Kurnitski & Martin Thalfeldt, 2020. "Office Building Tenants’ Electricity Use Model for Building Performance Simulations," Energies, MDPI, vol. 13(21), pages 1-19, October.
    20. Oluwatobi Aiyelokun & Quoc Bao Pham & Oluwafunbi Aiyelokun & Anurag Malik & S. Adarsh & Babak Mohammadi & Nguyen Thi Thuy Linh & Mohammad Zakwan, 2021. "Credibility of design rainfall estimates for drainage infrastructures: extent of disregard in Nigeria and proposed framework for practice," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1557-1588, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:43:y:2023:i:5:p:576-586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.