IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v39y2019i5p540-552.html
   My bibliography  Save this article

Multiobjective Calibration of Disease Simulation Models Using Gaussian Processes

Author

Listed:
  • Aditya Sai

    (Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA)

  • Carolina Vivas-Valencia

    (Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA)

  • Thomas F. Imperiale

    (Indiana University School of Medicine, Indiana University, Indianapolis, IN, USA
    Richard A. Roudebush VA Medical Center, Indianapolis, IN, USA
    Regenstrief Institute, Indianapolis, IN, USA)

  • Nan Kong

    (Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA)

Abstract

Background . Developing efficient procedures of model calibration, which entails matching model predictions to observed outcomes, has gained increasing attention. With faithful but complex simulation models established for cancer diseases, key parameters of cancer natural history can be investigated for possible fits, which can subsequently inform optimal prevention and treatment strategies. When multiple calibration targets exist, one approach to identifying optimal parameters relies on the Pareto frontier. However, computational burdens associated with higher-dimensional parameter spaces require a metamodeling approach. The goal of this work is to explore multiobjective calibration using Gaussian process regression (GPR) with an eye toward how multiple goodness-of-fit (GOF) criteria identify Pareto-optimal parameters. Methods . We applied GPR, a metamodeling technique, to estimate colorectal cancer (CRC)–related prevalence rates simulated from a microsimulation model of CRC natural history, known as the Colon Modeling Open Source Tool (CMOST). We embedded GPR metamodels within a Pareto optimization framework to identify best-fitting parameters for age-, adenoma-, and adenoma staging–dependent transition probabilities and risk factors. The Pareto frontier approach is demonstrated using genetic algorithms with both sum-of-squared errors (SSEs) and Poisson deviance GOF criteria. Results . The GPR metamodel is able to approximate CMOST outputs accurately on 2 separate parameter sets. Both GOF criteria are able to identify different best-fitting parameter sets on the Pareto frontier. The SSE criterion emphasizes the importance of age-specific adenoma progression parameters, while the Poisson criterion prioritizes adenoma-specific progression parameters. Conclusion . Different GOF criteria assert different components of the CRC natural history. The combination of multiobjective optimization and nonparametric regression, along with diverse GOF criteria, can advance the calibration process by identifying optimal regions of the underlying parameter landscape.

Suggested Citation

  • Aditya Sai & Carolina Vivas-Valencia & Thomas F. Imperiale & Nan Kong, 2019. "Multiobjective Calibration of Disease Simulation Models Using Gaussian Processes," Medical Decision Making, , vol. 39(5), pages 540-552, July.
  • Handle: RePEc:sae:medema:v:39:y:2019:i:5:p:540-552
    DOI: 10.1177/0272989X19862560
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X19862560
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X19862560?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. D. Stevenson & J. Oakley & J. B. Chilcott, 2004. "Gaussian Process Modeling in Conjunction with Individual Patient Simulation Modeling: A Case Study Describing the Calculation of Cost-Effectiveness Ratios for the Treatment of Established Osteoporosis," Medical Decision Making, , vol. 24(1), pages 89-100, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vahab Vahdat & Oguzhan Alagoz & Jing Voon Chen & Leila Saoud & Bijan J. Borah & Paul J. Limburg, 2023. "Calibration and Validation of the Colorectal Cancer and Adenoma Incidence and Mortality (CRC-AIM) Microsimulation Model Using Deep Neural Networks," Medical Decision Making, , vol. 43(6), pages 719-736, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neil Hawkins & Mark Sculpher & David Epstein, 2005. "Cost-Effectiveness Analysis of Treatments for Chronic Disease: Using R to Incorporate Time Dependency of Treatment Response," Medical Decision Making, , vol. 25(5), pages 511-519, September.
    2. Afschin Gandjour, 2010. "Investment in quality improvement: how to maximize the return," Health Economics, John Wiley & Sons, Ltd., vol. 19(1), pages 31-42, January.
    3. Mark Strong & Jeremy E. Oakley & Alan Brennan, 2014. "Estimating Multiparameter Partial Expected Value of Perfect Information from a Probabilistic Sensitivity Analysis Sample," Medical Decision Making, , vol. 34(3), pages 311-326, April.
    4. Bas Groot Koerkamp & Theo Stijnen & Milton C. Weinstein & M. G. Myriam Hunink, 2011. "The Combined Analysis of Uncertainty and Patient Heterogeneity in Medical Decision Models," Medical Decision Making, , vol. 31(4), pages 650-661, July.
    5. Marta Soares & Luísa Canto e Castro, 2012. "Continuous Time Simulation and Discretized Models for Cost-Effectiveness Analysis," PharmacoEconomics, Springer, vol. 30(12), pages 1101-1117, December.
    6. Hawre Jalal & Bryan Dowd & François Sainfort & Karen M. Kuntz, 2013. "Linear Regression Metamodeling as a Tool to Summarize and Present Simulation Model Results," Medical Decision Making, , vol. 33(7), pages 880-890, October.
    7. Marta O Soares & L Canto e Castro, 2010. "Simulation or cohort models? Continuous time simulation and discretized Markov models to estimate cost-effectiveness," Working Papers 056cherp, Centre for Health Economics, University of York.
    8. Marta O. Soares & Luísa Canto e Castro, 2012. "Continuous Time Simulation and Discretized Models for Cost-Effectiveness Analysis," PharmacoEconomics, Springer, vol. 30(12), pages 1101-1117, December.
    9. Anthony O'Hagan & Matt Stevenson & Jason Madan, 2007. "Monte Carlo probabilistic sensitivity analysis for patient level simulation models: efficient estimation of mean and variance using ANOVA," Health Economics, John Wiley & Sons, Ltd., vol. 16(10), pages 1009-1023.
    10. Ji-Hee Youn & Matt D. Stevenson & Praveen Thokala & Katherine Payne & Maria Goddard, 2019. "Modeling the Economic Impact of Interventions for Older Populations with Multimorbidity: A Method of Linking Multiple Single-Disease Models," Medical Decision Making, , vol. 39(7), pages 842-856, October.
    11. Oakley, Jeremy E. & Brennan, Alan & Tappenden, Paul & Chilcott, Jim, 2010. "Simulation sample sizes for Monte Carlo partial EVPI calculations," Journal of Health Economics, Elsevier, vol. 29(3), pages 468-477, May.
    12. Jason Madan & Anthony E. Ades & Malcolm Price & Kathryn Maitland & Julie Jemutai & Paul Revill & Nicky J. Welton, 2014. "Strategies for Efficient Computation of the Expected Value of Partial Perfect Information," Medical Decision Making, , vol. 34(3), pages 327-342, April.
    13. Anthony O'Hagan & Matt Stevenson & Jason Madan, 2007. "Monte Carlo probabilistic sensitivity analysis for patient level simulation models: efficient estimation of mean and variance using ANOVA," Health Economics, John Wiley & Sons, Ltd., vol. 16(10), pages 1009-1023, October.
    14. Tiago M. de Carvalho & Eveline A. M. Heijnsdijk & Luc Coffeng & Harry J. de Koning, 2019. "Evaluating Parameter Uncertainty in a Simulation Model of Cancer Using Emulators," Medical Decision Making, , vol. 39(4), pages 405-413, May.
    15. Joke Bilcke & Philippe Beutels & Marc Brisson & Mark Jit, 2011. "Accounting for Methodological, Structural, and Parameter Uncertainty in Decision-Analytic Models," Medical Decision Making, , vol. 31(4), pages 675-692, July.
    16. Nicky J. Welton & Howard H. Z. Thom, 2015. "Value of Information," Medical Decision Making, , vol. 35(5), pages 564-566, July.
    17. Jeremy D. Goldhaber-Fiebert & Hawre J. Jalal, 2016. "Some Health States Are Better Than Others," Medical Decision Making, , vol. 36(8), pages 927-940, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:39:y:2019:i:5:p:540-552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.