IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v36y2016i8p927-940.html
   My bibliography  Save this article

Some Health States Are Better Than Others

Author

Listed:
  • Jeremy D. Goldhaber-Fiebert
  • Hawre J. Jalal

Abstract

Background . Probabilistic sensitivity analyses (PSA) may lead policy makers to take nonoptimal actions due to misestimates of decision uncertainty caused by ignoring correlations. We developed a method to establish joint uncertainty distributions of quality-of-life (QoL) weights exploiting ordinal preferences over health states. Methods . Our method takes as inputs independent, univariate marginal distributions for each QoL weight and a preference ordering. It establishes a correlation matrix between QoL weights intended to preserve the ordering. It samples QoL weight values from their distributions, ordering them with the correlation matrix. It calculates the proportion of samples violating the ordering, iteratively adjusting the correlation matrix until this proportion is below an arbitrarily small threshold. We compare our method with the uncorrelated method and other methods for preserving rank ordering in terms of violation proportions and fidelity to the specified marginal distributions along with PSA and expected value of partial perfect information (EVPPI) estimates, using 2 models: 1) a decision tree with 2 decision alternatives and 2) a chronic hepatitis C virus (HCV) Markov model with 3 alternatives. Results . All methods make tradeoffs between violating preference orderings and altering marginal distributions. For both models, our method simultaneously performed best, with largest performance advantages when distributions reflected wider uncertainty. For PSA, larger changes to the marginal distributions induced by existing methods resulted in differing conclusions about which strategy was most likely optimal. For EVPPI, both preference order violations and altered marginal distributions caused existing methods to misestimate the maximum value of seeking additional information, sometimes concluding that there was no value. Conclusions . Analysts can characterize the joint uncertainty in QoL weights to improve PSA and value-of-information estimates using Open Source implementations of our method.

Suggested Citation

  • Jeremy D. Goldhaber-Fiebert & Hawre J. Jalal, 2016. "Some Health States Are Better Than Others," Medical Decision Making, , vol. 36(8), pages 927-940, November.
  • Handle: RePEc:sae:medema:v:36:y:2016:i:8:p:927-940
    DOI: 10.1177/0272989X15605091
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X15605091
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X15605091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. D. Stevenson & J. Oakley & J. B. Chilcott, 2004. "Gaussian Process Modeling in Conjunction with Individual Patient Simulation Modeling: A Case Study Describing the Calculation of Cost-Effectiveness Ratios for the Treatment of Established Osteoporosis," Medical Decision Making, , vol. 24(1), pages 89-100, January.
    2. Robert T. Clemen & Robert L. Winkler, 1985. "Limits for the Precision and Value of Information from Dependent Sources," Operations Research, INFORMS, vol. 33(2), pages 427-442, April.
    3. Briggs, Andrew & Sculpher, Mark & Claxton, Karl, 2006. "Decision Modelling for Health Economic Evaluation," OUP Catalogue, Oxford University Press, number 9780198526629.
    4. Andrew E. Smith & P. Barry Ryan & John S. Evans, 1992. "The Effect of Neglecting Correlations When Propagating Uncertainty and Estimating the Population Distribution of Risk," Risk Analysis, John Wiley & Sons, vol. 12(4), pages 467-474, December.
    5. A. E. Ades & G. Lu, 2003. "Correlations Between Parameters in Risk Models: Estimation and Propagation of Uncertainty by Markov Chain Monte Carlo," Risk Analysis, John Wiley & Sons, vol. 23(6), pages 1165-1172, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. E. Ades & Karl Claxton & Mark Sculpher, 2006. "Evidence synthesis, parameter correlation and probabilistic sensitivity analysis," Health Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 373-381, April.
    2. Joke Bilcke & Philippe Beutels & Marc Brisson & Mark Jit, 2011. "Accounting for Methodological, Structural, and Parameter Uncertainty in Decision-Analytic Models," Medical Decision Making, , vol. 31(4), pages 675-692, July.
    3. Robert T. Clemen & Gregory W. Fischer & Robert L. Winkler, 2000. "Assessing Dependence: Some Experimental Results," Management Science, INFORMS, vol. 46(8), pages 1100-1115, August.
    4. Marta Soares & Luísa Canto e Castro, 2012. "Continuous Time Simulation and Discretized Models for Cost-Effectiveness Analysis," PharmacoEconomics, Springer, vol. 30(12), pages 1101-1117, December.
    5. Marta O Soares & L Canto e Castro, 2010. "Simulation or cohort models? Continuous time simulation and discretized Markov models to estimate cost-effectiveness," Working Papers 056cherp, Centre for Health Economics, University of York.
    6. Marta O. Soares & Luísa Canto e Castro, 2012. "Continuous Time Simulation and Discretized Models for Cost-Effectiveness Analysis," PharmacoEconomics, Springer, vol. 30(12), pages 1101-1117, December.
    7. Ji-Hee Youn & Matt D. Stevenson & Praveen Thokala & Katherine Payne & Maria Goddard, 2019. "Modeling the Economic Impact of Interventions for Older Populations with Multimorbidity: A Method of Linking Multiple Single-Disease Models," Medical Decision Making, , vol. 39(7), pages 842-856, October.
    8. Chiranjeev Sanyal & Don Husereau, 2020. "Systematic Review of Economic Evaluations of Services Provided by Community Pharmacists," Applied Health Economics and Health Policy, Springer, vol. 18(3), pages 375-392, June.
    9. Mark Oppe & Daniela Ortín-Sulbarán & Carlos Vila Silván & Anabel Estévez-Carrillo & Juan M. Ramos-Goñi, 2021. "Cost-effectiveness of adding Sativex® spray to spasticity care in Belgium: using bootstrapping instead of Monte Carlo simulation for probabilistic sensitivity analyses," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 22(5), pages 711-721, July.
    10. Kaitlyn Hastings & Clara Marquina & Jedidiah Morton & Dina Abushanab & Danielle Berkovic & Stella Talic & Ella Zomer & Danny Liew & Zanfina Ademi, 2022. "Projected New-Onset Cardiovascular Disease by Socioeconomic Group in Australia," PharmacoEconomics, Springer, vol. 40(4), pages 449-460, April.
    11. Andrea Marcellusi & Raffaella Viti & Loreta A. Kondili & Stefano Rosato & Stefano Vella & Francesco Saverio Mennini, 2019. "Economic Consequences of Investing in Anti-HCV Antiviral Treatment from the Italian NHS Perspective: A Real-World-Based Analysis of PITER Data," PharmacoEconomics, Springer, vol. 37(2), pages 255-266, February.
    12. Risha Gidwani & Louise B. Russell, 2020. "Estimating Transition Probabilities from Published Evidence: A Tutorial for Decision Modelers," PharmacoEconomics, Springer, vol. 38(11), pages 1153-1164, November.
    13. Frank H. Koch & Denys Yemshanov & Daniel W. McKenney & William D. Smith, 2009. "Evaluating Critical Uncertainty Thresholds in a Spatial Model of Forest Pest Invasion Risk," Risk Analysis, John Wiley & Sons, vol. 29(9), pages 1227-1241, September.
    14. Joseph F. Levy & Marjorie A. Rosenberg, 2019. "A Latent Class Approach to Modeling Trajectories of Health Care Cost in Pediatric Cystic Fibrosis," Medical Decision Making, , vol. 39(5), pages 593-604, July.
    15. Aditya Sai & Carolina Vivas-Valencia & Thomas F. Imperiale & Nan Kong, 2019. "Multiobjective Calibration of Disease Simulation Models Using Gaussian Processes," Medical Decision Making, , vol. 39(5), pages 540-552, July.
    16. Qi Cao & Erik Buskens & Hans L. Hillege & Tiny Jaarsma & Maarten Postma & Douwe Postmus, 2019. "Stratified treatment recommendation or one-size-fits-all? A health economic insight based on graphical exploration," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 20(3), pages 475-482, April.
    17. Jorge Luis García & James J. Heckman, 2021. "Early childhood education and life‐cycle health," Health Economics, John Wiley & Sons, Ltd., vol. 30(S1), pages 119-141, November.
    18. Tushar Srivastava & Nicholas R. Latimer & Paul Tappenden, 2021. "Estimation of Transition Probabilities for State-Transition Models: A Review of NICE Appraisals," PharmacoEconomics, Springer, vol. 39(8), pages 869-878, August.
    19. Eleanor Heather & Katherine Payne & Mark Harrison & Deborah Symmons, 2014. "Including Adverse Drug Events in Economic Evaluations of Anti-Tumour Necrosis Factor-α Drugs for Adult Rheumatoid Arthritis: A Systematic Review of Economic Decision Analytic Models," PharmacoEconomics, Springer, vol. 32(2), pages 109-134, February.
    20. Manuel Gomes & Robert Aldridge & Peter Wylie & James Bell & Owen Epstein, 2013. "Cost-Effectiveness Analysis of 3-D Computerized Tomography Colonography Versus Optical Colonoscopy for Imaging Symptomatic Gastroenterology Patients," Applied Health Economics and Health Policy, Springer, vol. 11(2), pages 107-117, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:36:y:2016:i:8:p:927-940. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.