IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v39y2019i4p405-413.html
   My bibliography  Save this article

Evaluating Parameter Uncertainty in a Simulation Model of Cancer Using Emulators

Author

Listed:
  • Tiago M. de Carvalho

    (Department of Public Health, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
    Department of Applied Health Research, University College London, UK)

  • Eveline A. M. Heijnsdijk

    (Department of Public Health, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands)

  • Luc Coffeng

    (Department of Public Health, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands)

  • Harry J. de Koning

    (Department of Public Health, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands)

Abstract

Background . Microsimulation models have been extensively used in the field of cancer modeling. However, there is substantial uncertainty regarding estimates from these models, for example, overdiagnosis in prostate cancer. This is usually not thoroughly examined due to the high computational effort required. Objective . To quantify uncertainty in model outcomes due to uncertainty in model parameters, using a computationally efficient emulator (Gaussian process regression) instead of the model. Methods . We use a microsimulation model of prostate cancer (microsimulation screening analysis [MISCAN]) to simulate individual life histories. We analyze the effect of parametric uncertainty on overdiagnosis with probabilistic sensitivity analyses (ProbSAs). To minimize the number of MISCAN runs needed for ProbSAs, we emulate MISCAN, using data pairs of parameter values and outcomes to fit a Gaussian process regression model. We evaluate to what extent the emulator accurately reproduces MISCAN by computing its prediction error. Results . Using an emulator instead of MISCAN, we may reduce the computation time necessary to run a ProbSA by more than 85%. The average relative prediction error of the emulator for overdiagnosis equaled 1.7%. We predicted that 42% of screen-detected men are overdiagnosed, with an associated empirical confidence interval between 38% and 48%. Sensitivity analyses show that the accuracy of the emulator is sensitive to which model parameters are included in the training runs. Conclusions . For a computationally expensive simulation model with a large number of parameters, we show it is possible to conduct a ProbSA, within a reasonable computation time, by using a Gaussian process regression emulator instead of the original simulation model.

Suggested Citation

  • Tiago M. de Carvalho & Eveline A. M. Heijnsdijk & Luc Coffeng & Harry J. de Koning, 2019. "Evaluating Parameter Uncertainty in a Simulation Model of Cancer Using Emulators," Medical Decision Making, , vol. 39(4), pages 405-413, May.
  • Handle: RePEc:sae:medema:v:39:y:2019:i:4:p:405-413
    DOI: 10.1177/0272989X19837631
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X19837631
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X19837631?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. D. Stevenson & J. Oakley & J. B. Chilcott, 2004. "Gaussian Process Modeling in Conjunction with Individual Patient Simulation Modeling: A Case Study Describing the Calculation of Cost-Effectiveness Ratios for the Treatment of Established Osteoporosis," Medical Decision Making, , vol. 24(1), pages 89-100, January.
    2. Eugene T Y Chang & Mark Strong & Richard H Clayton, 2015. "Bayesian Sensitivity Analysis of a Cardiac Cell Model Using a Gaussian Process Emulator," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-20, June.
    3. Karl Claxton & Mark Sculpher & Chris McCabe & Andrew Briggs & Ron Akehurst & Martin Buxton & John Brazier & Tony O'Hagan, 2005. "Probabilistic sensitivity analysis for NICE technology assessment: not an optional extra," Health Economics, John Wiley & Sons, Ltd., vol. 14(4), pages 339-347, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arantzazu Arrospide & Oliver Ibarrondo & Iván Castilla & Igor Larrañaga & Javier Mar, 2022. "Development and Validation of a Discrete Event Simulation Model to Evaluate the Cardiovascular Impact of Population Policies for Obesity," Medical Decision Making, , vol. 42(2), pages 241-254, February.
    2. Arantzazu Arrospide & Oliver Ibarrondo & Rubén Blasco-Aguado & Igor Larrañaga & Fernando Alarid-Escudero & Javier Mar, 2024. "Using Age-Specific Rates for Parametric Survival Function Estimation in Simulation Models," Medical Decision Making, , vol. 44(4), pages 359-364, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anthony O'Hagan & Matt Stevenson & Jason Madan, 2007. "Monte Carlo probabilistic sensitivity analysis for patient level simulation models: efficient estimation of mean and variance using ANOVA," Health Economics, John Wiley & Sons, Ltd., vol. 16(10), pages 1009-1023, October.
    2. Marta Soares & Luísa Canto e Castro, 2012. "Continuous Time Simulation and Discretized Models for Cost-Effectiveness Analysis," PharmacoEconomics, Springer, vol. 30(12), pages 1101-1117, December.
    3. Marta O Soares & L Canto e Castro, 2010. "Simulation or cohort models? Continuous time simulation and discretized Markov models to estimate cost-effectiveness," Working Papers 056cherp, Centre for Health Economics, University of York.
    4. Marta O. Soares & Luísa Canto e Castro, 2012. "Continuous Time Simulation and Discretized Models for Cost-Effectiveness Analysis," PharmacoEconomics, Springer, vol. 30(12), pages 1101-1117, December.
    5. Anthony O'Hagan & Matt Stevenson & Jason Madan, 2007. "Monte Carlo probabilistic sensitivity analysis for patient level simulation models: efficient estimation of mean and variance using ANOVA," Health Economics, John Wiley & Sons, Ltd., vol. 16(10), pages 1009-1023.
    6. Ji-Hee Youn & Matt D. Stevenson & Praveen Thokala & Katherine Payne & Maria Goddard, 2019. "Modeling the Economic Impact of Interventions for Older Populations with Multimorbidity: A Method of Linking Multiple Single-Disease Models," Medical Decision Making, , vol. 39(7), pages 842-856, October.
    7. A. E. Ades & Karl Claxton & Mark Sculpher, 2006. "Evidence synthesis, parameter correlation and probabilistic sensitivity analysis," Health Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 373-381, April.
    8. Aditya Sai & Carolina Vivas-Valencia & Thomas F. Imperiale & Nan Kong, 2019. "Multiobjective Calibration of Disease Simulation Models Using Gaussian Processes," Medical Decision Making, , vol. 39(5), pages 540-552, July.
    9. Dongzhe Hong & Lei Si & Minghuan Jiang & Hui Shao & Wai-kit Ming & Yingnan Zhao & Yan Li & Lizheng Shi, 2019. "Cost Effectiveness of Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitors, Glucagon-Like Peptide-1 (GLP-1) Receptor Agonists, and Dipeptidyl Peptidase-4 (DPP-4) Inhibitors: A Systematic Review," PharmacoEconomics, Springer, vol. 37(6), pages 777-818, June.
    10. Pedram Sendi & Huldrych F Günthard & Mathew Simcock & Bruno Ledergerber & Jörg Schüpbach & Manuel Battegay & for the Swiss HIV Cohort Study, 2007. "Cost-Effectiveness of Genotypic Antiretroviral Resistance Testing in HIV-Infected Patients with Treatment Failure," PLOS ONE, Public Library of Science, vol. 2(1), pages 1-8, January.
    11. Isaac Corro Ramos & Maureen P. M. H. Rutten-van Mölken & Maiwenn J. Al, 2013. "The Role of Value-of-Information Analysis in a Health Care Research Priority Setting," Medical Decision Making, , vol. 33(4), pages 472-489, May.
    12. Neil Hawkins & Mark Sculpher & David Epstein, 2005. "Cost-Effectiveness Analysis of Treatments for Chronic Disease: Using R to Incorporate Time Dependency of Treatment Response," Medical Decision Making, , vol. 25(5), pages 511-519, September.
    13. McKenna, Claire & Chalabi, Zaid & Epstein, David & Claxton, Karl, 2010. "Budgetary policies and available actions: A generalisation of decision rules for allocation and research decisions," Journal of Health Economics, Elsevier, vol. 29(1), pages 170-181, January.
    14. Mattias Ekman & Peter Lindgren & Carolin Miltenburger & Genevieve Meier & Julie Locklear & Mary Chatterton, 2012. "Cost Effectiveness of Quetiapine in Patients with Acute Bipolar Depression and in Maintenance Treatment after an Acute Depressive Episode," PharmacoEconomics, Springer, vol. 30(6), pages 513-530, June.
    15. Peter J. Dodd & Debebe Shaweno & Chu-Chang Ku & Philippe Glaziou & Carel Pretorius & Richard J. Hayes & Peter MacPherson & Ted Cohen & Helen Ayles, 2023. "Transmission modeling to infer tuberculosis incidence prevalence and mortality in settings with generalized HIV epidemics," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Emma McIntosh, 2006. "Using Discrete Choice Experiments within a Cost-Benefit Analysis Framework," PharmacoEconomics, Springer, vol. 24(9), pages 855-868, September.
    17. John Hutton, 2012. "‘Health Economics’ and the evolution of economic evaluation of health technologies," Health Economics, John Wiley & Sons, Ltd., vol. 21(1), pages 13-18, January.
    18. Anna Heath & Petros Pechlivanoglou, 2022. "Prioritizing Research in an Era of Personalized Medicine: The Potential Value of Unexplained Heterogeneity," Medical Decision Making, , vol. 42(5), pages 649-660, July.
    19. Sofia Dias & Alex J. Sutton & Nicky J. Welton & A. E. Ades, 2013. "Evidence Synthesis for Decision Making 6," Medical Decision Making, , vol. 33(5), pages 671-678, July.
    20. Oakley, Jeremy E. & Brennan, Alan & Tappenden, Paul & Chilcott, Jim, 2010. "Simulation sample sizes for Monte Carlo partial EVPI calculations," Journal of Health Economics, Elsevier, vol. 29(3), pages 468-477, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:39:y:2019:i:4:p:405-413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.