IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v36y2016i1p20-30.html
   My bibliography  Save this article

Are There Scenarios When the Use of Non–Placebo-Control Groups in Experimental Trial Designs Increase Expected Value to Society?

Author

Listed:
  • Jennifer Uyei
  • R. Scott Braithwaite

Abstract

Background . Despite the benefits of the placebo-controlled trial design, it is limited by its inability to quantify total benefits and harms. Such trials, for example, are not designed to detect an intervention’s placebo or nocebo effects, which if detected could alter the benefit-to-harm balance and change a decision to adopt or reject an intervention. Objective . In this article, we explore scenarios in which alternative experimental trial designs, which differ in the type of control used, influence expected value across a range of pretest assumptions and study sample sizes. Method . We developed a decision model to compare 3 trial designs and their implications for decision making: 2-arm placebo-controlled trial (“placebo-control†), 2-arm intervention v. do nothing trial (“null-control†), and an innovative 3-arm trial design: intervention v. do nothing v. placebo trial (“novel design†). Four scenarios were explored regarding particular attributes of a hypothetical intervention: 1) all benefits and no harm, 2) no biological effect, 3) only biological effects, and 4) surreptitious harm (no biological benefit or nocebo effect). Results . Scenario 1: When sample sizes were very small, the null-control was preferred, but as sample sizes increased, expected value of all 3 designs converged. Scenario 2: The null-control was preferred regardless of sample size when the ratio of placebo to nocebo effect was >1; otherwise, the placebo-control was preferred. Scenario 3: When sample size was very small, the placebo-control was preferred when benefits outweighed harms, but the novel design was preferred when harms outweighed benefits. Scenario 4: The placebo-control was preferred when harms outweighed placebo benefits; otherwise, preference went to the null-control. Limitations . Scenarios are hypothetical, study designs have not been tested in a real-world setting, blinding is not possible in all designs, and some may argue the novel design poses ethical concerns. Conclusions . We identified scenarios in which alternative experimental study designs would confer greater expected value than the placebo-controlled trial design. The likelihood and prevalence of such situations warrant further study.

Suggested Citation

  • Jennifer Uyei & R. Scott Braithwaite, 2016. "Are There Scenarios When the Use of Non–Placebo-Control Groups in Experimental Trial Designs Increase Expected Value to Society?," Medical Decision Making, , vol. 36(1), pages 20-30, January.
  • Handle: RePEc:sae:medema:v:36:y:2016:i:1:p:20-30
    DOI: 10.1177/0272989X15584770
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X15584770
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X15584770?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Briggs, Andrew & Sculpher, Mark & Claxton, Karl, 2006. "Decision Modelling for Health Economic Evaluation," OUP Catalogue, Oxford University Press, number 9780198526629.
    2. Simon Eckermann & Andrew R. Willan, 2007. "Expected value of information and decision making in HTA," Health Economics, John Wiley & Sons, Ltd., vol. 16(2), pages 195-209, February.
    3. Karl Claxton & John Posnett, 1996. "An economic approach to clinical trial design and research priority‐setting," Health Economics, John Wiley & Sons, Ltd., vol. 5(6), pages 513-524, November.
    4. Karl Claxton & John Posnett, "undated". "An Economic Approach to Clinical Trial Design and Research Priority Setting," Discussion Papers 96/19, Department of Economics, University of York.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hawre Jalal & Jeremy D. Goldhaber-Fiebert & Karen M. Kuntz, 2015. "Computing Expected Value of Partial Sample Information from Probabilistic Sensitivity Analysis Using Linear Regression Metamodeling," Medical Decision Making, , vol. 35(5), pages 584-595, July.
    2. A C Bouman & A J ten Cate-Hoek & B L T Ramaekers & M A Joore, 2015. "Sample Size Estimation for Non-Inferiority Trials: Frequentist Approach versus Decision Theory Approach," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-14, June.
    3. Samer A. Kharroubi & Alan Brennan & Mark Strong, 2011. "Estimating Expected Value of Sample Information for Incomplete Data Models Using Bayesian Approximation," Medical Decision Making, , vol. 31(6), pages 839-852, November.
    4. Mark Strong & Jeremy E. Oakley & Alan Brennan & Penny Breeze, 2015. "Estimating the Expected Value of Sample Information Using the Probabilistic Sensitivity Analysis Sample," Medical Decision Making, , vol. 35(5), pages 570-583, July.
    5. Josh J. Carlson & Rahber Thariani & Josh Roth & Julie Gralow & N. Lynn Henry & Laura Esmail & Pat Deverka & Scott D. Ramsey & Laurence Baker & David L. Veenstra, 2013. "Value-of-Information Analysis within a Stakeholder-Driven Research Prioritization Process in a US Setting: An Application in Cancer Genomics," Medical Decision Making, , vol. 33(4), pages 463-471, May.
    6. Manuel A. Espinoza & Andrea Manca & Karl Claxton & Mark J. Sculpher, 2014. "The Value of Heterogeneity for Cost-Effectiveness Subgroup Analysis," Medical Decision Making, , vol. 34(8), pages 951-964, November.
    7. Lazaros Andronis & Lucinda J. Billingham & Stirling Bryan & Nicholas D. James & Pelham M. Barton, 2016. "A Practical Application of Value of Information and Prospective Payback of Research to Prioritize Evaluative Research," Medical Decision Making, , vol. 36(3), pages 321-334, April.
    8. Joanna Thorn & Joanna Coast & Lazaros Andronis, 2016. "Interpretation of the Expected Value of Perfect Information and Research Recommendations," Medical Decision Making, , vol. 36(3), pages 285-295, April.
    9. Eric Jutkowitz & Fernando Alarid-Escudero & Karen M. Kuntz & Hawre Jalal, 2019. "The Curve of Optimal Sample Size (COSS): A Graphical Representation of the Optimal Sample Size from a Value of Information Analysis," PharmacoEconomics, Springer, vol. 37(7), pages 871-877, July.
    10. Qi Cao & Erik Buskens & Hans L. Hillege & Tiny Jaarsma & Maarten Postma & Douwe Postmus, 2019. "Stratified treatment recommendation or one-size-fits-all? A health economic insight based on graphical exploration," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 20(3), pages 475-482, April.
    11. Neil Hawkins & Mark Sculpher & David Epstein, 2005. "Cost-Effectiveness Analysis of Treatments for Chronic Disease: Using R to Incorporate Time Dependency of Treatment Response," Medical Decision Making, , vol. 25(5), pages 511-519, September.
    12. Mark Strong & Jeremy E. Oakley, 2013. "An Efficient Method for Computing Single-Parameter Partial Expected Value of Perfect Information," Medical Decision Making, , vol. 33(6), pages 755-766, August.
    13. Rachael L. Fleurence, 2007. "Setting priorities for research: a practical application of 'payback' and expected value of information," Health Economics, John Wiley & Sons, Ltd., vol. 16(12), pages 1345-1357.
    14. Sofia Dias & Alex J. Sutton & Nicky J. Welton & A. E. Ades, 2013. "Evidence Synthesis for Decision Making 6," Medical Decision Making, , vol. 33(5), pages 671-678, July.
    15. Claire McKenna & Karl Claxton, 2011. "Addressing Adoption and Research Design Decisions Simultaneously," Medical Decision Making, , vol. 31(6), pages 853-865, November.
    16. Eric Jutkowitz & Fernando Alarid-Escudero & Hyon K. Choi & Karen M. Kuntz & Hawre Jalal, 2017. "Prioritizing Future Research on Allopurinol and Febuxostat for the Management of Gout: Value of Information Analysis," PharmacoEconomics, Springer, vol. 35(10), pages 1073-1085, October.
    17. Nicky J. Welton & Jason J. Madan & Deborah M. Caldwell & Tim J. Peters & Anthony E. Ades, 2014. "Expected Value of Sample Information for Multi-Arm Cluster Randomized Trials with Binary Outcomes," Medical Decision Making, , vol. 34(3), pages 352-365, April.
    18. Mark Strong & Jeremy E. Oakley & Alan Brennan, 2014. "Estimating Multiparameter Partial Expected Value of Perfect Information from a Probabilistic Sensitivity Analysis Sample," Medical Decision Making, , vol. 34(3), pages 311-326, April.
    19. Jeff Miller & Rolf Ulrich, 2019. "The quest for an optimal alpha," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-13, January.
    20. Alan Brennan & Samer A. Kharroubi, 2007. "Expected value of sample information for Weibull survival data," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1205-1225, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:36:y:2016:i:1:p:20-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.