IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v31y2011i1pe1-e10.html
   My bibliography  Save this article

Joint and Separate Evaluation of Risk Reduction

Author

Listed:
  • Dorte Gyrd-Hansen
  • Peder Halvorsen
  • Jørgen Nexøe
  • Jesper Nielsen
  • Henrik Støvring
  • Ivar Kristiansen

Abstract

Background. When people make choices, they may have multiple options presented simultaneously or, alternatively, have options presented 1 at a time. It has been shown that if decision makers have little experience with or difficulties in understanding certain attributes, these attributes will have greater impact in joint evaluations than in separate evaluations. The authors investigated the impact of separate versus joint evaluations in a health care context in which laypeople were presented with the possibility of participating in risk-reducing drug therapies. Methods. In a randomized study comprising 895 subjects aged 40 to 59 y in Odense, Denmark, subjects were randomized to receive information in terms of absolute risk reduction (ARR), relative risk reduction (RRR), number needed to treat (NNT), or prolongation of life (POL), all with respect to heart attack, and they were asked whether they would be willing to receive a specified treatment. Respondents were randomly allocated to valuing the interventions separately (either great effect or small effect) or jointly (small effect and large effect). Results. Joint evaluation reduced the propensity to accept the intervention that offered the smallest effect. Respondents were more sensitive to scale when faced with a joint evaluation for information formats ARR, RRR, and POL but not for NNT. Evaluability bias appeared to be most pronounced for POL and ARR. Conclusion. Risk information appears to be prone to evaluability bias. This suggests that numeric information on health gains is difficult to evaluate in isolation. Consequently, such information may bear too little weight in separate evaluations of risk-reducing interventions.

Suggested Citation

  • Dorte Gyrd-Hansen & Peder Halvorsen & Jørgen Nexøe & Jesper Nielsen & Henrik Støvring & Ivar Kristiansen, 2011. "Joint and Separate Evaluation of Risk Reduction," Medical Decision Making, , vol. 31(1), pages 1-10, January.
  • Handle: RePEc:sae:medema:v:31:y:2011:i:1:p:e1-e10
    DOI: 10.1177/0272989X10391268
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X10391268
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X10391268?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José Luis Pinto‐Prades & José Antonio Robles‐Zurita & Fernando‐Ignacio Sánchez‐Martínez & José María Abellán‐Perpiñán & Jorge Martínez‐Pérez, 2017. "Improving scope sensitivity in contingent valuation: Joint and separate evaluation of health states," Health Economics, John Wiley & Sons, Ltd., vol. 26(12), pages 304-318, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P.A.V.B. Swamy & I-Lok Chang & Jatinder S. Mehta & William H. Greene & Stephen G. Hall & George S. Tavlas, 2016. "Removing Specification Errors from the Usual Formulation of Binary Choice Models," Econometrics, MDPI, vol. 4(2), pages 1-21, June.
    2. Carlo Altavilla & Raffaella Giacomini & Giuseppe Ragusa, 2017. "Anchoring the yield curve using survey expectations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1055-1068, September.
    3. Fernando Rios-Avila & Gustavo Canavire-Bacarreza, 2018. "Standard-error correction in two-stage optimization models: A quasi–maximum likelihood estimation approach," Stata Journal, StataCorp LP, vol. 18(1), pages 206-222, March.
    4. Sandy Fréret & Denis Maguain, 2017. "The effects of agglomeration on tax competition: evidence from a two-regime spatial panel model on French data," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 24(6), pages 1100-1140, December.
    5. Ai, Chunrong & Chen, Xiaohong, 2007. "Estimation of possibly misspecified semiparametric conditional moment restriction models with different conditioning variables," Journal of Econometrics, Elsevier, vol. 141(1), pages 5-43, November.
    6. Gregory, Allan W. & McCurdy, Thomas H., 1986. "The unbiasedness hypothesis in the forward foreign exchange market: A specification analysis with application to France, Italy, Japan, the United Kingdom and West Germany," European Economic Review, Elsevier, vol. 30(2), pages 365-381, April.
    7. B. Praag & T. Dijkstra & J. Velzen, 1985. "Least-squares theory based on general distributional assumptions with an application to the incomplete observations problem," Psychometrika, Springer;The Psychometric Society, vol. 50(1), pages 25-36, March.
    8. Reischmann, Markus, 2016. "Creative accounting and electoral motives: Evidence from OECD countries," Journal of Comparative Economics, Elsevier, vol. 44(2), pages 243-257.
    9. Czudaj Robert L., 2020. "The role of uncertainty on agricultural futures markets momentum trading and volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(3), pages 1-39, June.
    10. Vassilios Babalos & Mehmet Balcilar & Rangan Gupta, 2014. "Revisiting Herding Behavior in REITs: A Regime-Switching Approach," Working Papers 201448, University of Pretoria, Department of Economics.
    11. Topi Miettinen & Sigrid Suetens, 2008. "Communication and Guilt in a Prisoner's Dilemma," Journal of Conflict Resolution, Peace Science Society (International), vol. 52(6), pages 945-960, December.
    12. Towfiqul Islam Khan & Mashfique Ibne Akbar, 2015. "Illicit Financial Flow in view of Financing the Post-2015 Development Agenda," Southern Voice Occasional Paper 25, Southern Voice.
    13. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    14. Potrafke, Niklas, 2019. "Electoral cycles in perceived corruption: International empirical evidence," Journal of Comparative Economics, Elsevier, vol. 47(1), pages 215-224.
    15. Corradi, Valentina & Swanson, Norman R., 2004. "A test for the distributional comparison of simulated and historical data," Economics Letters, Elsevier, vol. 85(2), pages 185-193, November.
    16. Hendrik Thiel & Stephan L. Thomsen, 2015. "Individual Poverty Paths and the Stability of Control-Perception," SOEPpapers on Multidisciplinary Panel Data Research 794, DIW Berlin, The German Socio-Economic Panel (SOEP).
    17. Arzheimer, Kai & Evans, Jocelyn, 2010. "Bread and butter à la française: Multiparty forecasts of the French legislative vote (1981-2007)," International Journal of Forecasting, Elsevier, vol. 26(1), pages 19-31, January.
    18. repec:ebl:ecbull:v:3:y:2008:i:5:p:1-7 is not listed on IDEAS
    19. Tobias Hartl & Roland Jucknewitz, 2022. "Approximate state space modelling of unobserved fractional components," Econometric Reviews, Taylor & Francis Journals, vol. 41(1), pages 75-98, January.
    20. Hao Wu & Michael Browne, 2015. "Random Model Discrepancy: Interpretations and Technicalities (A Rejoinder)," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 619-624, September.
    21. Tue Gørgens & Allan Würtz, 2012. "Testing a parametric function against a non‐parametric alternative in IV and GMM settings," Econometrics Journal, Royal Economic Society, vol. 15(3), pages 462-489, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:31:y:2011:i:1:p:e1-e10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.