IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v28y2008i1p66-89.html
   My bibliography  Save this article

Comparing the Incomparable? A Systematic Review of Competing Techniques for Converting Descriptive Measures of Health Status into QALY-Weights

Author

Listed:
  • Duncan Mortimer

    (Centre for Health Economics, Faculty of Business & Economics, Monash University, Melbourne, Australia, duncan.mortimer@buseco.monash.edu.au)

  • Leonie Segal

    (Centre for Health Economics, Faculty of Business & Economics, Monash University, Melbourne, Australia)

Abstract

Background . Algorithms for converting descriptive measures of health status into quality-adjusted life year (QALY)—weights are now widely available, and their application in economic evaluation is increasingly commonplace. The objective of this study is to describe and compare existing conversion algorithms and to highlight issues bearing on the derivation and interpretation of the QALY-weights so obtained. Methods . Systematic review of algorithms for converting descriptive measures of health status into QALY-weights. Results . The review identified a substantial body of literature comprising 46 derivation studies and 16 studies that provided evidence or commentary on the validity of conversion algorithms. Conversion algorithms were derived using 1 of 4 techniques: 1) transfer to utility regression, 2) response mapping, 3) effect size translation, and 4) “revaluing†outcome measures using preference-based scaling techniques. Although these techniques differ in their methodological/theoretical tradition, data requirements, and ease of derivation and application, the available evidence suggests that the sensitivity and validity of derived QALY-weights may be more dependent on the coverage and sensitivity of measures and the disease area/patient group under evaluation than on the technique used in derivation. Conclusions . Despite the recent proliferation of conversion algorithms, a number of questions bearing on the derivation and interpretation of derived QALY-weights remain unresolved. These unresolved issues suggest directions for future research in this area. In the meantime, analysts seeking guidance in selecting derived QALY-weights should consider the validity and feasibility of each conversion algorithm in the disease area and patient group under evaluation rather than restricting their choice to weights from a particular derivation technique.

Suggested Citation

  • Duncan Mortimer & Leonie Segal, 2008. "Comparing the Incomparable? A Systematic Review of Competing Techniques for Converting Descriptive Measures of Health Status into QALY-Weights," Medical Decision Making, , vol. 28(1), pages 66-89, January.
  • Handle: RePEc:sae:medema:v:28:y:2008:i:1:p:66-89
    DOI: 10.1177/0272989X07309642
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X07309642
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X07309642?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. D. Stratmann‐Schoene & T. Kuehn & R. Kreienberg & R. Leidl, 2006. "A preference‐based index for the SF‐12," Health Economics, John Wiley & Sons, Ltd., vol. 15(6), pages 553-564, June.
    2. Richardson, J., 1994. "Cost utility analysis: What should be measured?," Social Science & Medicine, Elsevier, vol. 39(1), pages 7-21, July.
    3. Doorslaer, Eddy van & Jones, Andrew M., 2003. "Inequalities in self-reported health: validation of a new approach to measurement," Journal of Health Economics, Elsevier, vol. 22(1), pages 61-87, January.
    4. Sherine E. Gabriel & Terry S. Kneeland & L. Joseph Melton & Megan M. Moncur & Bruce Ettinger & Anna N.A. Tosteson, 1999. "Health-related Quality of Life in Economic Evaluations for Osteoporosis," Medical Decision Making, , vol. 19(2), pages 141-148, April.
    5. Alastair M. Gray & Oliver Rivero-Arias & Philip M. Clarke, 2006. "Estimating the Association between SF-12 Responses and EQ-5D Utility Values by Response Mapping," Medical Decision Making, , vol. 26(1), pages 18-29, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harindra C. Wijeysundera & George Tomlinson & Colleen M. Norris & William A. Ghali & Dennis T. Ko & Murray D. Krahn, 2011. "Predicting EQ-5D Utility Scores from the Seattle Angina Questionnaire in Coronary Artery Disease," Medical Decision Making, , vol. 31(3), pages 481-493, May.
    2. Seamus Kent & Alastair Gray & Iryna Schlackow & Crispin Jenkinson & Emma McIntosh, 2015. "Mapping from the Parkinson’s Disease Questionnaire PDQ-39 to the Generic EuroQol EQ-5D-3L," Medical Decision Making, , vol. 35(7), pages 902-911, October.
    3. Vlaev, Ivo, 2012. "How different are real and hypothetical decisions? Overestimation, contrast and assimilation in social interaction," Journal of Economic Psychology, Elsevier, vol. 33(5), pages 963-972.
    4. David Parkin & Nigel Rice & Nancy Devlin, 2010. "Statistical Analysis of EQ-5D Profiles: Does the Use of Value Sets Bias Inference?," Medical Decision Making, , vol. 30(5), pages 556-565, September.
    5. Peter P. Wakker, 2008. "Lessons Learned by (from?) an Economist Working in Medical Decision Making," Medical Decision Making, , vol. 28(5), pages 690-698, September.
    6. Gang Chen & Munir A. Khan & Angelo Iezzi & Julie Ratcliffe & Jeff Richardson, 2016. "Mapping between 6 Multiattribute Utility Instruments," Medical Decision Making, , vol. 36(2), pages 160-175, February.
    7. Kelvin K. W. Chan & Andrew R. Willan & Michael Gupta & Eleanor Pullenayegum, 2014. "Underestimation of Uncertainties in Health Utilities Derived from Mapping Algorithms Involving Health-Related Quality-of-Life Measures," Medical Decision Making, , vol. 34(7), pages 863-872, October.
    8. Nicholas Mitsakakis & Karen E. Bremner & George Tomlinson & Murray Krahn, 2020. "Exploring the Benefits of Transformations in Health Utility Mapping," Medical Decision Making, , vol. 40(2), pages 183-197, February.
    9. McCarthy, Ian M., 2016. "Eliminating composite bias in treatment effects estimates: Applications to quality of life assessment," Journal of Health Economics, Elsevier, vol. 50(C), pages 47-58.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peasgood, T & Ward, S & Brazier, J, 2010. "A review and meta-analysis of health state utility values in breast cancer," MPRA Paper 29950, University Library of Munich, Germany.
    2. John Brazier & Yaling Yang & Aki Tsuchiya & Donna Rowen, 2010. "A review of studies mapping (or cross walking) non-preference based measures of health to generic preference-based measures," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 11(2), pages 215-225, April.
    3. Christine McDonough & Anna Tosteson, 2007. "Measuring Preferences for Cost-Utility Analysis," PharmacoEconomics, Springer, vol. 25(2), pages 93-106, February.
    4. Hongliang Wang & Yiwen Yu, 2016. "Increasing health inequality in China: An empirical study with ordinal data," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 14(1), pages 41-61, March.
    5. Mark Oppe & Daniela Ortín-Sulbarán & Carlos Vila Silván & Anabel Estévez-Carrillo & Juan M. Ramos-Goñi, 2021. "Cost-effectiveness of adding Sativex® spray to spasticity care in Belgium: using bootstrapping instead of Monte Carlo simulation for probabilistic sensitivity analyses," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 22(5), pages 711-721, July.
    6. Fleurbaey, Marc & Schokkaert, Erik, 2009. "Unfair inequalities in health and health care," Journal of Health Economics, Elsevier, vol. 28(1), pages 73-90, January.
    7. Pilar García Gómez & Ángel López Nicolás, 2005. "Socio-economic inequalities in health in Catalonia," Hacienda Pública Española / Review of Public Economics, IEF, vol. 175(4), pages 103-121, december.
    8. Bénédicte Apouey & Jacques Silber, 2013. "Inequality and Bi-Polarization in Socioeconomic Status and Health: Ordinal Approaches," Research on Economic Inequality, in: Health and Inequality, volume 21, pages 77-109, Emerald Group Publishing Limited.
    9. Brazier, JE & Yang, Y & Tsuchiya, A, 2008. "A review of studies mapping (or cross walking) from non-preference based measures of health to generic preference-based measures," MPRA Paper 29808, University Library of Munich, Germany.
    10. Quinn C, 2009. "Measuring income-related inequalities in health using a parametric dependence function," Health, Econometrics and Data Group (HEDG) Working Papers 09/24, HEDG, c/o Department of Economics, University of York.
    11. Cubi-Molla, P. & De Vries, J. & Devlin, N., 2013. "A Study of the Relationship Between Health and Subjective Well-being in Parkinson’s Disease Patients," Working Papers 13/12, Department of Economics, City University London.
    12. Koen Decancq, 2014. "Copula-based measurement of dependence between dimensions of well-being," Oxford Economic Papers, Oxford University Press, vol. 66(3), pages 681-701.
    13. Adam Wagstaff & Eddy van Doorslaer, 2004. "Overall versus socioeconomic health inequality: a measurement framework and two empirical illustrations," Health Economics, John Wiley & Sons, Ltd., vol. 13(3), pages 297-301, March.
    14. Kazuma Sato, 2020. "Does marriage improve subjective health in Japan?," The Japanese Economic Review, Springer, vol. 71(2), pages 247-286, April.
    15. Pope, Robin, 2004. "Biases from omitted risk effects in standard gamble utilities," Journal of Health Economics, Elsevier, vol. 23(4), pages 695-735, July.
    16. Koen Decancq & Marc Fleurbaey & François Maniquet, 2019. "Multidimensional poverty measurement with individual preferences," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 17(1), pages 29-49, March.
    17. Erreygers, Guido & Van Ourti, Tom, 2011. "Measuring socioeconomic inequality in health, health care and health financing by means of rank-dependent indices: A recipe for good practice," Journal of Health Economics, Elsevier, vol. 30(4), pages 685-694, July.
    18. David Madden, 2015. "Health and Wealth on the Roller-Coaster: Ireland, 2003–2011," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 121(2), pages 387-412, April.
    19. Wiktoria Wróblewska, 2012. "Nierówności społeczne w stanie zdrowia w Polsce – analiza na podstawie samooceny stanu zdrowia oraz poziomu wykształcenia," Collegium of Economic Analysis Annals, Warsaw School of Economics, Collegium of Economic Analysis, issue 28, pages 65-84.
    20. Bénédicte Apouey & David Madden, 2023. "Health poverty," Chapters, in: Jacques Silber (ed.), Research Handbook on Measuring Poverty and Deprivation, chapter 19, pages 202-211, Edward Elgar Publishing.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:28:y:2008:i:1:p:66-89. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.