IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v19y1999i3p339-343.html
   My bibliography  Save this article

Power and Sample Size in Cost- Effectiveness Analysis

Author

Listed:
  • Eugene M. Laska
  • Morris Meisner
  • Carole Siegel

Abstract

For resource allocation under a constrained budget, optimal decision rules for mutually exclusive programs require that the treatment with the highest incremental cost-effec tiveness ratio (ICER) below a willingness-to-pay (WTP) criterion be funded. This is equivalent to determining the treatment with the smallest net health cost. The designer of a cost-effectiveness study needs to select a sample size so that the power to reject the null hypothesis, the equality of the net health costs of two treatments, is high. A recently published formula derived under normal distribution theory overstates sample- size requirements. Using net health costs, the authors present simple methods for power analysis based on conventional normal and on nonparametric statistical theory. Key words: cost-effectiveness analysis; power; sample size; cost-effectiveness ratios; net health costs; net health benefits; statistical analysis. (Med Decis Making 1999;19: 339-343)

Suggested Citation

  • Eugene M. Laska & Morris Meisner & Carole Siegel, 1999. "Power and Sample Size in Cost- Effectiveness Analysis," Medical Decision Making, , vol. 19(3), pages 339-343, August.
  • Handle: RePEc:sae:medema:v:19:y:1999:i:3:p:339-343
    DOI: 10.1177/0272989X9901900312
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X9901900312
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X9901900312?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Aaron A. Stinnett & John Mullahy, 1998. "Net Health Benefits," Medical Decision Making, , vol. 18(2_suppl), pages 68-80, April.
    2. Aaron A. Stinnett & John Mullahy, 1998. "Net Health Benefits: A New Framework for the Analysis of Uncertainty in Cost-Effectiveness Analysis," NBER Technical Working Papers 0227, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joseph C. Gardiner & Marianne Huebner & James Jetton & Cathy J. Bradley, 2000. "Power and sample assessments for tests of hypotheses on cost‐effectiveness ratios," Health Economics, John Wiley & Sons, Ltd., vol. 9(3), pages 227-234, April.
    2. Henry Glick, 2011. "Sample Size and Power for Cost-Effectiveness Analysis (Part 1)," PharmacoEconomics, Springer, vol. 29(3), pages 189-198, March.
    3. A. Gafni & S. D. Walter & S. Birch & P. Sendi, 2008. "An opportunity cost approach to sample size calculation in cost‐effectiveness analysis," Health Economics, John Wiley & Sons, Ltd., vol. 17(1), pages 99-107, January.
    4. Niklas Zethraeus & Magnus Johannesson & Bengt Jönsson & Mickael Löthgren & Magnus Tambour, 2003. "Advantages of Using the Net-Benefit Approach for Analysing Uncertainty in Economic Evaluation Studies," PharmacoEconomics, Springer, vol. 21(1), pages 39-48, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Basu, Anirban & Jena, Anupam B. & Philipson, Tomas J., 2011. "The impact of comparative effectiveness research on health and health care spending," Journal of Health Economics, Elsevier, vol. 30(4), pages 695-706, July.
    2. Simon Eckermann & Tim Coelli, 2008. "Including quality attributes in a model of health care efficiency: A net benefit approach," CEPA Working Papers Series WP032008, School of Economics, University of Queensland, Australia.
    3. Clarke, Philip M. & Hayes, Alison J., 2009. "Measuring achievement: Changes in risk factors for cardiovascular disease in Australia," Social Science & Medicine, Elsevier, vol. 68(3), pages 552-561, February.
    4. Niklas Zethraeus & Magnus Johannesson & Bengt Jönsson & Mickael Löthgren & Magnus Tambour, 2003. "Advantages of Using the Net-Benefit Approach for Analysing Uncertainty in Economic Evaluation Studies," PharmacoEconomics, Springer, vol. 21(1), pages 39-48, January.
    5. Jordan Amdahl & Jose Diaz & Arati Sharma & Jinhee Park & David Chandiwana & Thomas E Delea, 2017. "Cost-effectiveness of pazopanib versus sunitinib for metastatic renal cell carcinoma in the United Kingdom," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-18, June.
    6. Emma McIntosh, 2006. "Using Discrete Choice Experiments within a Cost-Benefit Analysis Framework," PharmacoEconomics, Springer, vol. 24(9), pages 855-868, September.
    7. Martin Henriksson & Fredrik Lundgren & Per Carlsson, 2006. "Informing the efficient use of health care and health care research resources ‐ the case of screening for abdominal aortic aneurysm in Sweden," Health Economics, John Wiley & Sons, Ltd., vol. 15(12), pages 1311-1322, December.
    8. David Brain & Ruth Tulleners & Xing Lee & Qinglu Cheng & Nicholas Graves & Rosana Pacella, 2019. "Cost-effectiveness analysis of an innovative model of care for chronic wounds patients," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-13, March.
    9. Stefano Conti & Karl Claxton, 2008. "Dimensions of design space: a decision-theoretic approach to optimal research design," Working Papers 038cherp, Centre for Health Economics, University of York.
    10. Andrew H. Briggs & Bernie J. O'Brien, 2001. "The death of cost‐minimization analysis?," Health Economics, John Wiley & Sons, Ltd., vol. 10(2), pages 179-184, March.
    11. Richard M. Nixon & David Wonderling & Richard D. Grieve, 2010. "Non‐parametric methods for cost‐effectiveness analysis: the central limit theorem and the bootstrap compared," Health Economics, John Wiley & Sons, Ltd., vol. 19(3), pages 316-333, March.
    12. Karl Claxton & Elisabeth Fenwick & Mark J. Sculpher, 2012. "Decision-making with Uncertainty: The Value of Information," Chapters, in: Andrew M. Jones (ed.), The Elgar Companion to Health Economics, Second Edition, chapter 51, Edward Elgar Publishing.
    13. John Mullahy, 2017. "Individual Results May Vary: Elementary Analytics of Inequality-Probability Bounds, with Applications to Health-Outcome Treatment Effects," NBER Working Papers 23603, National Bureau of Economic Research, Inc.
    14. Andrew Briggs, 2012. "Statistical Methods for Cost-effectiveness Analysis Alongside Clinical Trials," Chapters, in: Andrew M. Jones (ed.), The Elgar Companion to Health Economics, Second Edition, chapter 50, Edward Elgar Publishing.
    15. Bas Groot Koerkamp & M. G. Myriam Hunink & Theo Stijnen & Milton C. Weinstein, 2006. "Identifying key parameters in cost‐effectiveness analysis using value of information: a comparison of methods," Health Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 383-392, April.
    16. Quang Dang Nguyen & Mikhail Prokopenko, 2022. "A general framework for optimising cost-effectiveness of pandemic response under partial intervention measures," Papers 2205.08996, arXiv.org, revised Nov 2022.
    17. Mullahy, John, 2018. "Individual results may vary: Inequality-probability bounds for some health-outcome treatment effects," Journal of Health Economics, Elsevier, vol. 61(C), pages 151-162.
    18. Pauline Chauvin & Jean-Michel Josselin & Denis Heresbach, 2012. "Incremental net benefit and acceptability of alternative health policies: a case study of mass screening for colorectal cancer," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 13(3), pages 237-250, June.
    19. Elamin H. Elbasha, 2005. "Risk aversion and uncertainty in cost‐effectiveness analysis: the expected‐utility, moment‐generating function approach," Health Economics, John Wiley & Sons, Ltd., vol. 14(5), pages 457-470, May.
    20. Daniel Howdon & James Lomas, 2017. "Pricing implications of non-marginal budgetary impacts in health technology assessment: a conceptual model," Working Papers 148cherp, Centre for Health Economics, University of York.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:19:y:1999:i:3:p:339-343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.