IDEAS home Printed from https://ideas.repec.org/a/sae/jocore/v36y1992i1p86-118.html
   My bibliography  Save this article

The Dimension of Superpower Rivalry

Author

Listed:
  • John T. Williams
  • Michael D. McGinnis

    (Indiana University)

Abstract

The security policies of the United States and the Soviet Union can be interpreted as manifestations of a single “rivalry system.†If each state's security policies are driven by the same underlying factors, then any effort to separate the contributions of internal and external determinants of the arms race is essentially misleading. We use dynamic factor analysis to evaluate whether an unobservable dimension of rivalry explains the dynamics exhibited by the military expenditures and diplomatic hostility of these two states. A one-factor model explains much of the variance of these data series, although some evidence indicates the possible existence of a second factor. More generally, the results of this analysis question the validity of many structural equation models of dyadic interaction.

Suggested Citation

  • John T. Williams & Michael D. McGinnis, 1992. "The Dimension of Superpower Rivalry," Journal of Conflict Resolution, Peace Science Society (International), vol. 36(1), pages 86-118, March.
  • Handle: RePEc:sae:jocore:v:36:y:1992:i:1:p:86-118
    DOI: 10.1177/0022002792036001004
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0022002792036001004
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0022002792036001004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ordeshook,Peter C., 1986. "Game Theory and Political Theory," Cambridge Books, Cambridge University Press, number 9780521315937, September.
    2. Ostrom, Charles W., 1978. "A Reactive Linkage Model of the U.S. Defense Expenditure Policymaking Process," American Political Science Review, Cambridge University Press, vol. 72(3), pages 941-957, September.
    3. McGinnis, Michael D. & Williams, John T., 1989. "Change and Stability in Superpower Rivalry," American Political Science Review, Cambridge University Press, vol. 83(4), pages 1101-1123, December.
    4. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    5. T. Anderson, 1963. "The use of factor analysis in the statistical analysis of multiple time series," Psychometrika, Springer;The Psychometric Society, vol. 28(1), pages 1-25, March.
    6. Thomas J. Sargent & Christopher A. Sims, 1977. "Business cycle modeling without pretending to have too much a priori economic theory," Working Papers 55, Federal Reserve Bank of Minneapolis.
    7. Watson, Mark W. & Engle, Robert F., 1983. "Alternative algorithms for the estimation of dynamic factor, mimic and varying coefficient regression models," Journal of Econometrics, Elsevier, vol. 23(3), pages 385-400, December.
    8. Walter Isard & Charles H. Anderton, 1985. "Arms Race Models: A Survey and Synthesis," Conflict Management and Peace Science, Peace Science Society (International), vol. 8(2), pages 27-98, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael D. McGinnis, 1991. "Richardson, Rationality, and Restrictive Models of Arms Races," Journal of Conflict Resolution, Peace Science Society (International), vol. 35(3), pages 443-473, September.
    2. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    3. Diebold, Francis X & Rudebusch, Glenn D, 1996. "Measuring Business Cycles: A Modern Perspective," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 67-77, February.
    4. Bork, Lasse, 2009. "Estimating US Monetary Policy Shocks Using a Factor-Augmented Vector Autoregression: An EM Algorithm Approach," Finance Research Group Working Papers F-2009-03, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    5. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    6. Dickhaus, Thorsten & Sirotko-Sibirskaya, Natalia, 2019. "Simultaneous statistical inference in dynamic factor models: Chi-square approximation and model-based bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 30-46.
    7. Bragoli, Daniela & Modugno, Michele, 2017. "A now-casting model for Canada: Do U.S. variables matter?," International Journal of Forecasting, Elsevier, vol. 33(4), pages 786-800.
    8. Daniel Fernández, 2011. "Suficiencia del capital y previsiones de la banca uruguaya por su exposición al sector industrial," Monetaria, CEMLA, vol. 0(4), pages 517-589, octubre-d.
    9. Bessler, David A., 1985. "The Forecast In Risk Analysis," Regional Research Projects > 1985: S-180 Annual Meeting, March 24-27, 1985, Charleston, South Carolina 271795, Regional Research Projects > S-180: An Economic Analysis of Risk Management Strategies for Agricultural Production Firms.
    10. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    11. Gregory, Allan W. & Head, Allen C., 1999. "Common and country-specific fluctuations in productivity, investment, and the current account," Journal of Monetary Economics, Elsevier, vol. 44(3), pages 423-451, December.
    12. Jeff B. Cromwell & Michael J. Hannan, 1993. "The Utility of Impulse Response Functions in Regional Analysis: Some Critical Issues," International Regional Science Review, , vol. 15(2), pages 199-222, August.
    13. Fiorentini, Gabriele & Galesi, Alessandro & Sentana, Enrique, 2018. "A spectral EM algorithm for dynamic factor models," Journal of Econometrics, Elsevier, vol. 205(1), pages 249-279.
    14. Francis X. Diebold, 1998. "The Past, Present, and Future of Macroeconomic Forecasting," Journal of Economic Perspectives, American Economic Association, vol. 12(2), pages 175-192, Spring.
    15. Javier Pereda, 2011. "Estimación de la tasa natural de interés para Perú: un enfoque financiero," Monetaria, CEMLA, vol. 0(4), pages 429-459, octubre-d.
    16. Modugno, Michele & Soybilgen, Barış & Yazgan, Ege, 2016. "Nowcasting Turkish GDP and news decomposition," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1369-1384.
    17. Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013. "Now-Casting and the Real-Time Data Flow," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 195-237, Elsevier.
    18. Norman J. Morin, 2006. "Likelihood ratio tests on cointegrating vectors, disequilibrium adjustment vectors, and their orthogonal complements," Finance and Economics Discussion Series 2006-21, Board of Governors of the Federal Reserve System (U.S.).
    19. Francisco J. Goerlich-Gisbert, 1999. "Shocks agregados versus shocks sectoriales. Un análisis factorial dinámico," Investigaciones Economicas, Fundación SEPI, vol. 23(1), pages 27-53, January.
    20. Arabinda Basistha & Richard Startz, 2024. "Measuring persistent global economic factors with output, commodity price, and commodity currency data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2860-2885, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jocore:v:36:y:1992:i:1:p:86-118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: http://pss.la.psu.edu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.