IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v48y2023i3p296-319.html
   My bibliography  Save this article

A Randomization P-Value Test for Detecting Copying on Multiple-Choice Exams

Author

Listed:
  • Joseph B. Lang

    (University of Iowa)

Abstract

This article is concerned with the statistical detection of copying on multiple-choice exams. As an alternative to existing permutation- and model-based copy-detection approaches, a simple randomization p -value (RP) test is proposed. The RP test, which is based on an intuitive match-score statistic, makes no assumptions about the distribution of examinees’ answer vectors and hence is broadly applicable. Especially important in this copy-detection setting, the RP test is shown to be exact in that its size is guaranteed to be no larger than a nominal α value. Additionally, simulation results suggest that the RP test is typically more powerful for copy detection than the existing approximate tests. The development of the RP test is based on the idea that the copy-detection problem can be recast as a causal inference and missing data problem. In particular, the observed data are viewed as a subset of a larger collection of potential values, or counterfactuals, and the null hypothesis of “no copying†is viewed as a “no causal effect†hypothesis and formally expressed in terms of constraints on potential variables.

Suggested Citation

  • Joseph B. Lang, 2023. "A Randomization P-Value Test for Detecting Copying on Multiple-Choice Exams," Journal of Educational and Behavioral Statistics, , vol. 48(3), pages 296-319, June.
  • Handle: RePEc:sae:jedbes:v:48:y:2023:i:3:p:296-319
    DOI: 10.3102/10769986221143515
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/10769986221143515
    Download Restriction: no

    File URL: https://libkey.io/10.3102/10769986221143515?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. R. Darrell Bock, 1972. "Estimating item parameters and latent ability when responses are scored in two or more nominal categories," Psychometrika, Springer;The Psychometric Society, vol. 37(1), pages 29-51, March.
    2. Donald B. Rubin, 2005. "Causal Inference Using Potential Outcomes: Design, Modeling, Decisions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 322-331, March.
    3. Mauricio Romero & Ã lvaro Riascos & Diego Jara, 2015. "On the Optimality of Answer-Copying Indices," Journal of Educational and Behavioral Statistics, , vol. 40(5), pages 435-453, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noémi Kreif & Richard Grieve & Iván Díaz & David Harrison, 2015. "Evaluation of the Effect of a Continuous Treatment: A Machine Learning Approach with an Application to Treatment for Traumatic Brain Injury," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1213-1228, September.
    2. Martin Ravallion, 2022. "On the Gains from Tradable Benefits‐in‐kind: Evidence for Workfare in India," Economica, London School of Economics and Political Science, vol. 89(355), pages 770-787, July.
    3. Peter Abell & Ofer Engel, 2021. "Subjective Causality and Counterfactuals in the Social Sciences: Toward an Ethnographic Causality?," Sociological Methods & Research, , vol. 50(4), pages 1842-1862, November.
    4. Shonosuke Sugasawa & Hisashi Noma, 2021. "Efficient screening of predictive biomarkers for individual treatment selection," Biometrics, The International Biometric Society, vol. 77(1), pages 249-257, March.
    5. Salvatore Bimonte & Antonella D’Agostino, 2021. "Tourism development and residents’ well-being: Comparing two seaside destinations in Italy," Tourism Economics, , vol. 27(7), pages 1508-1525, November.
    6. Mealli Fabrizia & Mattei Alessandra, 2012. "A Refreshing Account of Principal Stratification," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-19, April.
    7. Luo, Nanyu & Ji, Feng & Han, Yuting & He, Jinbo & Zhang, Xiaoya, 2024. "Fitting item response theory models using deep learning computational frameworks," OSF Preprints tjxab, Center for Open Science.
    8. Michelle M. LaMar, 2018. "Markov Decision Process Measurement Model," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 67-88, March.
    9. Bas Hemker & Klaas Sijtsma & Ivo Molenaar & Brian Junker, 1996. "Polytomous IRT models and monotone likelihood ratio of the total score," Psychometrika, Springer;The Psychometric Society, vol. 61(4), pages 679-693, December.
    10. Antonio R. Linero, 2022. "Simulation‐based estimators of analytically intractable causal effects," Biometrics, The International Biometric Society, vol. 78(3), pages 1001-1017, September.
    11. Berger, Marius & Hottenrott, Hanna, 2021. "Start-up subsidies and the sources of venture capital," Journal of Business Venturing Insights, Elsevier, vol. 16(C).
    12. Sahar Saeed & Erica E. M. Moodie & Erin C. Strumpf & Marina B. Klein, 2018. "Segmented generalized mixed effect models to evaluate health outcomes," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 63(4), pages 547-551, May.
    13. Sijia Huang & Li Cai, 2024. "Cross-Classified Item Response Theory Modeling With an Application to Student Evaluation of Teaching," Journal of Educational and Behavioral Statistics, , vol. 49(3), pages 311-341, June.
    14. Jinglong Zhao, 2024. "Experimental Design For Causal Inference Through An Optimization Lens," Papers 2408.09607, arXiv.org, revised Aug 2024.
    15. Hodula, Martin & Melecký, Martin & Pfeifer, Lukáš & Szabo, Milan, 2023. "Cooling the mortgage loan market: The effect of borrower-based limits on new mortgage lending," Journal of International Money and Finance, Elsevier, vol. 132(C).
    16. Manuel S. González Canché, 2017. "Financial Benefits of Rapid Student Loan Repayment: An Analytic Framework Employing Two Decades of Data," The ANNALS of the American Academy of Political and Social Science, , vol. 671(1), pages 154-182, May.
    17. Damian Clarke & Daniel Paila~nir & Susan Athey & Guido Imbens, 2023. "Synthetic Difference In Differences Estimation," Papers 2301.11859, arXiv.org, revised Feb 2023.
    18. Björn Andersson & Tao Xin, 2021. "Estimation of Latent Regression Item Response Theory Models Using a Second-Order Laplace Approximation," Journal of Educational and Behavioral Statistics, , vol. 46(2), pages 244-265, April.
    19. Almer, Christian & Winkler, Ralph, 2017. "Analyzing the effectiveness of international environmental policies: The case of the Kyoto Protocol," Journal of Environmental Economics and Management, Elsevier, vol. 82(C), pages 125-151.
    20. Sanford C. Gordon & Hannah K. Simpson, 2020. "Causes, theories, and the past in political science," Public Choice, Springer, vol. 185(3), pages 315-333, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:48:y:2023:i:3:p:296-319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.