IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v46y2021i6p717-752.html
   My bibliography  Save this article

Detecting Noneffortful Responses Based on a Residual Method Using an Iterative Purification Process

Author

Listed:
  • Yue Liu

    (Institute of Brain and Psychological Sciences, Sichuan Normal University
    Faculty of Psychology, Beijing Normal University)

  • Hongyun Liu

    (Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University)

Abstract

The prevalence and serious consequences of noneffortful responses from unmotivated examinees are well-known in educational measurement. In this study, we propose to apply an iterative purification process based on a response time residual method with fixed item parameter estimates to detect noneffortful responses. The proposed method is compared with the traditional residual method and noniterative method with fixed item parameters in two simulation studies in terms of noneffort detection accuracy and parameter recovery. The results show that when severity of noneffort is high, the proposed method leads to a much higher true positive rate with a small increase of false discovery rate. In addition, parameter estimation is significantly improved by the strategies of fixing item parameters and iteratively cleansing. These results suggest that the proposed method is a potential solution to reduce the impact of data contamination due to severe low test-taking effort and to obtain more accurate parameter estimates. An empirical study is also conducted to show the differences in the detection rate and parameter estimates among different approaches.

Suggested Citation

  • Yue Liu & Hongyun Liu, 2021. "Detecting Noneffortful Responses Based on a Residual Method Using an Iterative Purification Process," Journal of Educational and Behavioral Statistics, , vol. 46(6), pages 717-752, December.
  • Handle: RePEc:sae:jedbes:v:46:y:2021:i:6:p:717-752
    DOI: 10.3102/1076998621994366
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/1076998621994366
    Download Restriction: no

    File URL: https://libkey.io/10.3102/1076998621994366?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wim Linden & Fanmin Guo, 2008. "Bayesian Procedures for Identifying Aberrant Response-Time Patterns in Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 73(3), pages 365-384, September.
    2. Chun Wang & Gongjun Xu & Zhuoran Shang, 2018. "A Two-Stage Approach to Differentiating Normal and Aberrant Behavior in Computer Based Testing," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 223-254, March.
    3. Wim van der Linden, 2007. "A Hierarchical Framework for Modeling Speed and Accuracy on Test Items," Psychometrika, Springer;The Psychometric Society, vol. 72(3), pages 287-308, September.
    4. Tom Snijders, 2001. "Asymptotic null distribution of person fit statistics with estimated person parameter," Psychometrika, Springer;The Psychometric Society, vol. 66(3), pages 331-342, September.
    5. Jeffrey M. Patton & Ying Cheng & Maxwell Hong & Qi Diao, 2019. "Detection and Treatment of Careless Responses to Improve Item Parameter Estimation," Journal of Educational and Behavioral Statistics, , vol. 44(3), pages 309-341, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Renske E. Kuijpers & Ingmar Visser & Dylan Molenaar, 2021. "Testing the Within-State Distribution in Mixture Models for Responses and Response Times," Journal of Educational and Behavioral Statistics, , vol. 46(3), pages 348-373, June.
    2. Edison M. Choe & Jinming Zhang & Hua-Hua Chang, 2018. "Sequential Detection of Compromised Items Using Response Times in Computerized Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 650-673, September.
    3. Maria Bolsinova & Paul Boeck & Jesper Tijmstra, 2017. "Modelling Conditional Dependence Between Response Time and Accuracy," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1126-1148, December.
    4. Hyeon-Ah Kang, 2023. "Sequential Generalized Likelihood Ratio Tests for Online Item Monitoring," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 672-696, June.
    5. Sandip Sinharay & Peter W. van Rijn, 2020. "Assessing Fit of the Lognormal Model for Response Times," Journal of Educational and Behavioral Statistics, , vol. 45(5), pages 534-568, October.
    6. Chun Wang & Gongjun Xu & Zhuoran Shang, 2018. "A Two-Stage Approach to Differentiating Normal and Aberrant Behavior in Computer Based Testing," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 223-254, March.
    7. Chen, Yunxiao & Lu, Yan & Moustaki, Irini, 2022. "Detection of two-way outliers in multivariate data and application to cheating detection in educational tests," LSE Research Online Documents on Economics 112499, London School of Economics and Political Science, LSE Library.
    8. Wim J. van der Linden, 2009. "A Bivariate Lognormal Response-Time Model for the Detection of Collusion Between Test Takers," Journal of Educational and Behavioral Statistics, , vol. 34(3), pages 378-394, September.
    9. Inhan Kang & Dylan Molenaar & Roger Ratcliff, 2023. "A Modeling Framework to Examine Psychological Processes Underlying Ordinal Responses and Response Times of Psychometric Data," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 940-974, September.
    10. Inhan Kang & Paul Boeck & Roger Ratcliff, 2022. "Modeling Conditional Dependence of Response Accuracy and Response Time with the Diffusion Item Response Theory Model," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 725-748, June.
    11. Steffi Pohl & Esther Ulitzsch & Matthias Davier, 2019. "Using Response Times to Model Not-Reached Items due to Time Limits," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 892-920, September.
    12. Dylan Molenaar & Paul Boeck, 2018. "Response Mixture Modeling: Accounting for Heterogeneity in Item Characteristics across Response Times," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 279-297, June.
    13. Inhan Kang & Minjeong Jeon & Ivailo Partchev, 2023. "A Latent Space Diffusion Item Response Theory Model to Explore Conditional Dependence between Responses and Response Times," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 830-864, September.
    14. Onur Demirkaya & Ummugul Bezirhan & Jinming Zhang, 2023. "Detecting Item Preknowledge Using Revisits With Speed and Accuracy," Journal of Educational and Behavioral Statistics, , vol. 48(4), pages 521-542, August.
    15. Hongyue Zhu & Hong Jiao & Wei Gao & Xiangbin Meng, 2023. "Bayesian Change-Point Analysis Approach to Detecting Aberrant Test-Taking Behavior Using Response Times," Journal of Educational and Behavioral Statistics, , vol. 48(4), pages 490-520, August.
    16. Hyeon-Ah Kang & Yi Zheng & Hua-Hua Chang, 2020. "Online Calibration of a Joint Model of Item Responses and Response Times in Computerized Adaptive Testing," Journal of Educational and Behavioral Statistics, , vol. 45(2), pages 175-208, April.
    17. Matthias von Davier & Lale Khorramdel & Qiwei He & Hyo Jeong Shin & Haiwen Chen, 2019. "Developments in Psychometric Population Models for Technology-Based Large-Scale Assessments: An Overview of Challenges and Opportunities," Journal of Educational and Behavioral Statistics, , vol. 44(6), pages 671-705, December.
    18. Steven Andrew Culpepper & James Joseph Balamuta, 2017. "A Hierarchical Model for Accuracy and Choice on Standardized Tests," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 820-845, September.
    19. Xiang Liu & James Yang & Hui Soo Chae & Gary Natriello, 2020. "Power Divergence Family of Statistics for Person Parameters in IRT Models," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 502-525, June.
    20. C. Glas & Anna Dagohoy, 2007. "A Person Fit Test For Irt Models For Polytomous Items," Psychometrika, Springer;The Psychometric Society, vol. 72(2), pages 159-180, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:46:y:2021:i:6:p:717-752. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.