IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v46y2021i1p109-132.html
   My bibliography  Save this article

Design-Based Covariate Adjustments in Paired Experiments

Author

Listed:
  • Edward Wu
  • Johann A. Gagnon-Bartsch

Abstract

In paired experiments, participants are grouped into pairs with similar characteristics, and one observation from each pair is randomly assigned to treatment. The resulting treatment and control groups should be well-balanced; however, there may still be small chance imbalances. Building on work for completely randomized experiments, we propose a design-based method to adjust for covariate imbalances in paired experiments. We leave out each pair and impute its potential outcomes using any prediction algorithm such as lasso or random forests. This method addresses a unique trade-off that exists for paired experiments. By addressing this trade-off, the method has the potential to improve precision over existing methods.

Suggested Citation

  • Edward Wu & Johann A. Gagnon-Bartsch, 2021. "Design-Based Covariate Adjustments in Paired Experiments," Journal of Educational and Behavioral Statistics, , vol. 46(1), pages 109-132, February.
  • Handle: RePEc:sae:jedbes:v:46:y:2021:i:1:p:109-132
    DOI: 10.3102/1076998620941469
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/1076998620941469
    Download Restriction: no

    File URL: https://libkey.io/10.3102/1076998620941469?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    2. Small, Dylan S. & Ten Have, Thomas R. & Rosenbaum, Paul R., 2008. "Randomization Inference in a GroupRandomized Trial of Treatments for Depression: Covariate Adjustment, Noncompliance, and Quantile Effects," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 271-279, March.
    3. Guido W. Imbens, 2010. "Better LATE Than Nothing: Some Comments on Deaton (2009) and Heckman and Urzua (2009)," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 399-423, June.
    4. Zhenke Wu & Constantine E. Frangakis & Thomas A. Louis & Daniel O. Scharfstein, 2014. "Estimation of treatment effects in matched-pair cluster randomized trials by calibrating covariate imbalance between clusters," Biometrics, The International Biometric Society, vol. 70(4), pages 1014-1022, December.
    5. Xinran Li & Peng Ding, 2020. "Rerandomization and regression adjustment," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(1), pages 241-268, February.
    6. Colin B Fogarty, 2018. "Regression-assisted inference for the average treatment effect in paired experiments," Biometrika, Biometrika Trust, vol. 105(4), pages 994-1000.
    7. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bai, Yuehao & Jiang, Liang & Romano, Joseph P. & Shaikh, Azeem M. & Zhang, Yichong, 2024. "Covariate adjustment in experiments with matched pairs," Journal of Econometrics, Elsevier, vol. 241(1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guido W. Imbens, 2020. "Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics," Journal of Economic Literature, American Economic Association, vol. 58(4), pages 1129-1179, December.
    2. Zhao, Anqi & Ding, Peng, 2024. "No star is good news: A unified look at rerandomization based on p-values from covariate balance tests," Journal of Econometrics, Elsevier, vol. 241(1).
    3. Harold D Chiang & Yukitoshi Matsushita & Taisuke Otsu, 2023. "Regression adjustment in randomized controlled trials with many covariates," STICERD - Econometrics Paper Series 627, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    4. Harold D Chiang & Yukitoshi Matsushita & Taisuke Otsu, 2023. "Regression adjustment in randomized controlled trials with many covariates," Papers 2302.00469, arXiv.org, revised Nov 2023.
    5. Fangzhou Su & Peng Ding, 2021. "Model‐assisted analyses of cluster‐randomized experiments," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 994-1015, November.
    6. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    7. Sung Jae Jun & Sokbae Lee, 2024. "Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
    8. Öberg, Stefan, 2018. "Instrumental variables based on twin births are by definition not valid (v.3.0)," SocArXiv zux9s, Center for Open Science.
    9. Huber Martin & Wüthrich Kaspar, 2019. "Local Average and Quantile Treatment Effects Under Endogeneity: A Review," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-27, January.
    10. Pedro Carneiro & Sokbae Lee & Daniel Wilhelm, 2020. "Optimal data collection for randomized control trials," The Econometrics Journal, Royal Economic Society, vol. 23(1), pages 1-31.
    11. Guido W. Imbens, 2022. "Causality in Econometrics: Choice vs Chance," Econometrica, Econometric Society, vol. 90(6), pages 2541-2566, November.
    12. Mark Kattenberg & Bas Scheer & Jurre Thiel, 2023. "Causal forests with fixed effects for treatment effect heterogeneity in difference-in-differences," CPB Discussion Paper 452, CPB Netherlands Bureau for Economic Policy Analysis.
    13. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
    14. Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," SciencePo Working papers Main hal-03455978, HAL.
    15. Yumou Qiu & Jing Tao & Xiao‐Hua Zhou, 2021. "Inference of heterogeneous treatment effects using observational data with high‐dimensional covariates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 1016-1043, November.
    16. Victor Chernozhukov & Carlos Cinelli & Whitney Newey & Amit Sharma & Vasilis Syrgkanis, 2021. "Long Story Short: Omitted Variable Bias in Causal Machine Learning," Papers 2112.13398, arXiv.org, revised May 2024.
    17. Agboola, Oluwagbenga David & Yu, Han, 2023. "Neighborhood-based cross fitting approach to treatment effects with high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
    18. David M. Ritzwoller & Vasilis Syrgkanis, 2024. "Simultaneous Inference for Local Structural Parameters with Random Forests," Papers 2405.07860, arXiv.org, revised Sep 2024.
    19. Jeffrey Smith & Arthur Sweetman, 2016. "Viewpoint: Estimating the causal effects of policies and programs," Canadian Journal of Economics, Canadian Economics Association, vol. 49(3), pages 871-905, August.
    20. Jiaming Zeng & Michael F. Gensheimer & Daniel L. Rubin & Susan Athey & Ross D. Shachter, 2022. "Uncovering interpretable potential confounders in electronic medical records," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:46:y:2021:i:1:p:109-132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.