IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v45y2020i4p475-506.html
   My bibliography  Save this article

Sensitivity Evaluation of Methods for Estimating Complier Average Causal Mediation Effects to Assumptions

Author

Listed:
  • Soojin Park
  • Gregory J. Palardy

    (University of California, Riverside)

Abstract

Estimating the effects of randomized experiments and, by extension, their mediating mechanisms, is often complicated by treatment noncompliance. Two estimation methods for causal mediation in the presence of noncompliance have recently been proposed, the instrumental variable method (IV-mediate) and maximum likelihood method (ML-mediate). However, little research has examined their performance when certain assumptions are violated and under varying data conditions. This article addresses that gap in the research and compares the performance of the two methods. The results show that the distributional assumption of the compliance behavior plays an important role in estimation. That is, regardless of the estimation method or whether the other assumptions hold, results are biased if the distributional assumption is not met. We also found that the IV-mediate method is more sensitive to exclusion restriction violations, while the ML-mediate method is more sensitive to monotonicity violations. Moreover, estimates depend in part on compliance rate, sample size, and the availability and impact of control covariates. These findings are used to provide guidance on estimator selection.

Suggested Citation

  • Soojin Park & Gregory J. Palardy, 2020. "Sensitivity Evaluation of Methods for Estimating Complier Average Causal Mediation Effects to Assumptions," Journal of Educational and Behavioral Statistics, , vol. 45(4), pages 475-506, August.
  • Handle: RePEc:sae:jedbes:v:45:y:2020:i:4:p:475-506
    DOI: 10.3102/1076998620908599
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/1076998620908599
    Download Restriction: no

    File URL: https://libkey.io/10.3102/1076998620908599?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yau L.H.Y. & Little R.J., 2001. "Inference for the Complier-Average Causal Effect From Longitudinal Data Subject to Noncompliance and Missing Data, With Application to a Job Training Assessment for the Unemployed," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1232-1244, December.
    2. J. B. Copas & H. G. Li, 1997. "Inference for Non‐random Samples," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(1), pages 55-95.
    3. Peng Ding & Jiannan Lu, 2017. "Principal stratification analysis using principal scores," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 757-777, June.
    4. Zhang, Junni L. & Rubin, Donald B. & Mealli, Fabrizia, 2009. "Likelihood-Based Analysis of Causal Effects of Job-Training Programs Using Principal Stratification," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 166-176.
    5. Tingley, Dustin & Yamamoto, Teppei & Hirose, Kentaro & Keele, Luke & Imai, Kosuke, 2014. "mediation: R Package for Causal Mediation Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 59(i05).
    6. Constantine E. Frangakis & Donald B. Rubin, 2002. "Principal Stratification in Causal Inference," Biometrics, The International Biometric Society, vol. 58(1), pages 21-29, March.
    7. Keele, Luke & Tingley, Dustin & Teppei Yamamoto, "undated". "Identifying Mechanisms behind Policy Interventions via Causal Mediation Analysis," Working Paper 135661, Harvard University OpenScholar.
    8. Luke Keele & Dustin Tingley & Teppei Yamamoto, 2015. "Identifying Mechanisms Behind Policy Interventions Via Causal Mediation Analysis," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 34(4), pages 937-963, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Park Soojin & Kürüm Esra, 2020. "A Two-Stage Joint Modeling Method for Causal Mediation Analysis in the Presence of Treatment Noncompliance," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 131-149, January.
    2. Park Soojin & Kürüm Esra, 2020. "A Two-Stage Joint Modeling Method for Causal Mediation Analysis in the Presence of Treatment Noncompliance," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 131-149, January.
    3. Markku Maula & Wouter Stam, 2020. "Enhancing Rigor in Quantitative Entrepreneurship Research," Entrepreneurship Theory and Practice, , vol. 44(6), pages 1059-1090, November.
    4. Egle Vaznyte & Petra Andries & Sarah Demeulemeester, 2021. "“Don’t leave me this way!” Drivers of parental hostility and employee spin-offs’ performance," Small Business Economics, Springer, vol. 57(1), pages 265-293, June.
    5. Martin Huber & Mark Schelker & Anthony Strittmatter, 2022. "Direct and Indirect Effects based on Changes-in-Changes," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 432-443, January.
    6. Viviana Celli, 2019. "Causal Mediation Analysis in Economics: objectives, assumptions, models," Working Papers 12/19, Sapienza University of Rome, DISS.
    7. Viviana Celli, 2022. "Causal mediation analysis in economics: Objectives, assumptions, models," Journal of Economic Surveys, Wiley Blackwell, vol. 36(1), pages 214-234, February.
    8. Avi Feller & Fabrizia Mealli & Luke Miratrix, 2017. "Principal Score Methods: Assumptions, Extensions, and Practical Considerations," Journal of Educational and Behavioral Statistics, , vol. 42(6), pages 726-758, December.
    9. Fabian Kosse & Thomas Deckers & Pia Pinger & Hannah Schildberg-Hörisch & Armin Falk, 2020. "The Formation of Prosociality: Causal Evidence on the Role of Social Environment," Journal of Political Economy, University of Chicago Press, vol. 128(2), pages 434-467.
    10. German Blanco & Carlos A. Flores & Alfonso Flores-Lagunes, 2013. "Bounds on Average and Quantile Treatment Effects of Job Corps Training on Wages," Journal of Human Resources, University of Wisconsin Press, vol. 48(3), pages 659-701.
    11. Giovanni Mellace & Roberto Rocci, 2011. "Principal Stratification in sample selection problems with non normal error terms," CEIS Research Paper 194, Tor Vergata University, CEIS, revised 02 May 2011.
    12. Kilburn, Kelly & Handa, Sudhanshu & Angeles, Gustavo & Mvula, Peter & Tsoka, Maxton, 2017. "Short-term impacts of an unconditional cash transfer program on child schooling: Experimental evidence from Malawi," Economics of Education Review, Elsevier, vol. 59(C), pages 63-80.
    13. Andrea Mercatanti & Fan Li, 2017. "Do debit cards decrease cash demand?: causal inference and sensitivity analysis using principal stratification," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 759-776, August.
    14. Imbens, Guido W., 2014. "Instrumental Variables: An Econometrician's Perspective," IZA Discussion Papers 8048, Institute of Labor Economics (IZA).
    15. Weili Ding & Steven F. Lehrer, 2010. "Estimating Treatment Effects from Contaminated Multiperiod Education Experiments: The Dynamic Impacts of Class Size Reductions," The Review of Economics and Statistics, MIT Press, vol. 92(1), pages 31-42, February.
    16. Bia, Michela & Flores-Lagunes, Alfonso & Mercatanti, Andrea, 2018. "Evaluation of Language Training Programs in Luxembourg using Principal Stratification," GLO Discussion Paper Series 289, Global Labor Organization (GLO).
    17. Ohrnberger, Julius & Anselmi, Laura & Fichera, Eleonora & Sutton, Matt, 2020. "The effect of cash transfers on mental health: Opening the black box – A study from South Africa," Social Science & Medicine, Elsevier, vol. 260(C).
    18. Luna Bellani & Michela Bia, 2016. "Intergenerational poverty transmission in Europe: The role of education," Working Paper Series of the Department of Economics, University of Konstanz 2016-02, Department of Economics, University of Konstanz.
    19. Helmut Farbmacher & Martin Huber & Lukáš Lafférs & Henrika Langen & Martin Spindler, 2022. "Causal mediation analysis with double machine learning [Mediation analysis via potential outcomes models]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 277-300.
    20. Shanshan Luo & Wei Li & Yangbo He, 2023. "Causal inference with outcomes truncated by death in multiarm studies," Biometrics, The International Biometric Society, vol. 79(1), pages 502-513, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:45:y:2020:i:4:p:475-506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.