IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v45y2020i3p297-315.html
   My bibliography  Save this article

Full Information Optimal Scoring

Author

Listed:
  • James Ramsay

    (McGill University)

  • Marie Wiberg

    (Umeå University)

  • Juan Li

    (Ottawa Hospital Research Institute)

Abstract

Ramsay and Wiberg used a new version of item response theory that represents test performance over nonnegative closed intervals such as [0, 100] or [0, n ] and demonstrated that optimal scoring of binary test data yielded substantial improvements in point-wise root-mean-squared error and bias over number right or sum scoring. We extend these results by showing that optimal scoring of the full information in option choices produces about as much further improvement in these measures of score performance as was achieved by going from sum scoring to optimal binary scoring.

Suggested Citation

  • James Ramsay & Marie Wiberg & Juan Li, 2020. "Full Information Optimal Scoring," Journal of Educational and Behavioral Statistics, , vol. 45(3), pages 297-315, June.
  • Handle: RePEc:sae:jedbes:v:45:y:2020:i:3:p:297-315
    DOI: 10.3102/1076998619885636
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/1076998619885636
    Download Restriction: no

    File URL: https://libkey.io/10.3102/1076998619885636?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marie Wiberg & James O. Ramsay & Juan Li, 2019. "Optimal Scores: An Alternative to Parametric Item Response Theory and Sum Scores," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 310-322, March.
    2. Carol Woods & David Thissen, 2006. "Item Response Theory with Estimation of the Latent Population Distribution Using Spline-Based Densities," Psychometrika, Springer;The Psychometric Society, vol. 71(2), pages 281-301, June.
    3. Carol M. Woods & David Thissen, 2006. "Item Response Theory with Estimation of the Latent Population Distribution Using Spline-Based Densities," Psychometrika, Springer;The Psychometric Society, vol. 71(2), pages 281-301, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rasmus A. X. Persson, 2023. "Theoretical evaluation of partial credit scoring of the multiple-choice test item," METRON, Springer;Sapienza Università di Roma, vol. 81(2), pages 143-161, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Liu, 2020. "A Riemannian Optimization Algorithm for Joint Maximum Likelihood Estimation of High-Dimensional Exploratory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 439-468, June.
    2. Li Cai, 2010. "A Two-Tier Full-Information Item Factor Analysis Model with Applications," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 581-612, December.
    3. J. R. Lockwood & Katherine E. Castellano & Benjamin R. Shear, 2018. "Flexible Bayesian Models for Inferences From Coarsened, Group-Level Achievement Data," Journal of Educational and Behavioral Statistics, , vol. 43(6), pages 663-692, December.
    4. Christopher J. Urban & Daniel J. Bauer, 2021. "A Deep Learning Algorithm for High-Dimensional Exploratory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 1-29, March.
    5. Ke-Hai Yuan & Ying Cheng & Jeff Patton, 2014. "Information Matrices and Standard Errors for MLEs of Item Parameters in IRT," Psychometrika, Springer;The Psychometric Society, vol. 79(2), pages 232-254, April.
    6. Ying Cheng & Cheng Liu & John Behrens, 2015. "Standard Error of Ability Estimates and the Classification Accuracy and Consistency of Binary Decisions," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 645-664, September.
    7. Ernesto San Martín & Alejandro Jara & Jean-Marie Rolin & Michel Mouchart, 2011. "On the Bayesian Nonparametric Generalization of IRT-Type Models," Psychometrika, Springer;The Psychometric Society, vol. 76(3), pages 385-409, July.
    8. Shaobo Jin & Fan Yang-Wallentin, 2017. "Asymptotic Robustness Study of the Polychoric Correlation Estimation," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 67-85, March.
    9. James O. Ramsay & Marie Wiberg, 2017. "A Strategy for Replacing Sum Scoring," Journal of Educational and Behavioral Statistics, , vol. 42(3), pages 282-307, June.
    10. Marie Wiberg & James O. Ramsay & Juan Li, 2019. "Optimal Scores: An Alternative to Parametric Item Response Theory and Sum Scores," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 310-322, March.
    11. Yang Liu & Ji Seung Yang, 2018. "Bootstrap-Calibrated Interval Estimates for Latent Variable Scores in Item Response Theory," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 333-354, June.
    12. Steven P. Reise & Han Du & Emily F. Wong & Anne S. Hubbard & Mark G. Haviland, 2021. "Matching IRT Models to Patient-Reported Outcomes Constructs: The Graded Response and Log-Logistic Models for Scaling Depression," Psychometrika, Springer;The Psychometric Society, vol. 86(3), pages 800-824, September.
    13. Bianconcini, Silvia & Cagnone, Silvia, 2012. "Estimation of generalized linear latent variable models via fully exponential Laplace approximation," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 183-193.
    14. Sally Paganin & Christopher J. Paciorek & Claudia Wehrhahn & Abel Rodríguez & Sophia Rabe-Hesketh & Perry de Valpine, 2023. "Computational Strategies and Estimation Performance With Bayesian Semiparametric Item Response Theory Models," Journal of Educational and Behavioral Statistics, , vol. 48(2), pages 147-188, April.
    15. Ernesto San Martín & Jean-Marie Rolin & Luis Castro, 2013. "Identification of the 1PL Model with Guessing Parameter: Parametric and Semi-parametric Results," Psychometrika, Springer;The Psychometric Society, vol. 78(2), pages 341-379, April.
    16. Longjuan Liang & Michael W. Browne, 2015. "A Quasi-Parametric Method for Fitting Flexible Item Response Functions," Journal of Educational and Behavioral Statistics, , vol. 40(1), pages 5-34, February.
    17. Scott Monroe, 2021. "Testing Latent Variable Distribution Fit in IRT Using Posterior Residuals," Journal of Educational and Behavioral Statistics, , vol. 46(3), pages 374-398, June.
    18. Andrej Srakar & Vesna Čopič & Miroslav Verbič, 2018. "European cultural statistics in a comparative perspective: index of economic and social condition of culture for the EU countries," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 42(2), pages 163-199, May.
    19. Xi Wang & Yang Liu, 2020. "Detecting Compromised Items Using Information From Secure Items," Journal of Educational and Behavioral Statistics, , vol. 45(6), pages 667-689, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:45:y:2020:i:3:p:297-315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.