IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v43y2018i1p32-56.html
   My bibliography  Save this article

Weighting-Based Sensitivity Analysis in Causal Mediation Studies

Author

Listed:
  • Guanglei Hong
  • Xu Qin

    (University of Chicago)

  • Fan Yang

    (University of Colorado Denver)

Abstract

Through a sensitivity analysis, the analyst attempts to determine whether a conclusion of causal inference could be easily reversed by a plausible violation of an identification assumption. Analytic conclusions that are harder to alter by such a violation are expected to add a higher value to scientific knowledge about causality. This article presents a weighting-based approach to sensitivity analysis for causal mediation studies. Extending the ratio-of-mediator-probability weighting (RMPW) method for identifying natural indirect effect and natural direct effect, the new strategy assesses potential bias in the presence of omitted pretreatment or posttreatment covariates. Such omissions may undermine the causal validity of analytic conclusions. The weighting approach to sensitivity analysis reduces the reliance on functional form assumptions and removes constraints on the measurement scales for the mediator, the outcome, and the omitted covariates. In its essence, the discrepancy between a new weight that adjusts for an omitted confounder and an initial weight that omits the confounder captures the role of the confounder that contributes to the bias. The effect size of the bias due to omitted confounding of the mediator–outcome relationship is a product of two sensitivity parameters, one associated with the degree to which the omitted confounders predict the mediator and the other associated with the degree to which they predict the outcome. The article provides an application example and concludes with a discussion of broad applications of this new approach to sensitivity analysis. Online Supplemental Material includes R code for implementing the proposed sensitivity analysis procedure.

Suggested Citation

  • Guanglei Hong & Xu Qin & Fan Yang, 2018. "Weighting-Based Sensitivity Analysis in Causal Mediation Studies," Journal of Educational and Behavioral Statistics, , vol. 43(1), pages 32-56, February.
  • Handle: RePEc:sae:jedbes:v:43:y:2018:i:1:p:32-56
    DOI: 10.3102/1076998617749561
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/1076998617749561
    Download Restriction: no

    File URL: https://libkey.io/10.3102/1076998617749561?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shadish, William R. & Clark, M. H. & Steiner, Peter M., 2008. "Can Nonrandomized Experiments Yield Accurate Answers? A Randomized Experiment Comparing Random and Nonrandom Assignments," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1334-1344.
    2. Guanglei Hong & Jonah Deutsch & Heather D. Hill, 2015. "Ratio-of-Mediator-Probability Weighting for Causal Mediation Analysis in the Presence of Treatment-by-Mediator Interaction," Mathematica Policy Research Reports 328b045b48b14d9ea3f7d0fe9, Mathematica Policy Research.
    3. Stijn Vansteelandt & Tyler J. VanderWeele, 2012. "Natural Direct and Indirect Effects on the Exposed: Effect Decomposition under Weaker Assumptions," Biometrics, The International Biometric Society, vol. 68(4), pages 1019-1027, December.
    4. Imai, Kosuke & Yamamoto, Teppei, 2013. "Identification and Sensitivity Analysis for Multiple Causal Mechanisms: Revisiting Evidence from Framing Experiments," Political Analysis, Cambridge University Press, vol. 21(2), pages 141-171, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Huber & Michael Lechner & Giovanni Mellace, 2017. "Why Do Tougher Caseworkers Increase Employment? The Role of Program Assignment as a Causal Mechanism," The Review of Economics and Statistics, MIT Press, vol. 99(1), pages 180-183, March.
    2. Soojin Park & Kevin M. Esterling, 2021. "Sensitivity Analysis for Pretreatment Confounding With Multiple Mediators," Journal of Educational and Behavioral Statistics, , vol. 46(1), pages 85-108, February.
    3. Steen, Johan & Loeys, Tom & Moerkerke, Beatrijs & Vansteelandt, Stijn, 2017. "medflex: An R Package for Flexible Mediation Analysis using Natural Effect Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i11).
    4. Guanglei Hong & Fan Yang & Xu Qin, 2023. "Posttreatment confounding in causal mediation studies: A cutting‐edge problem and a novel solution via sensitivity analysis," Biometrics, The International Biometric Society, vol. 79(2), pages 1042-1056, June.
    5. Giovanni Mellace & Alessandra Pasquini, 2019. "Identify More, Observe Less: Mediation Analysis Synthetic Control," CEIS Research Paper 474, Tor Vergata University, CEIS, revised 20 Nov 2019.
    6. Mellace, Giovanni & Pasquini, Alessandra, 2019. "Identify More, Observe Less: Mediation Analysis: Mediation Analysis Synthetic Control," Discussion Papers on Economics 12/2019, University of Southern Denmark, Department of Economics.
    7. Xu Qin & Guanglei Hong, 2017. "A Weighting Method for Assessing Between-Site Heterogeneity in Causal Mediation Mechanism," Journal of Educational and Behavioral Statistics, , vol. 42(3), pages 308-340, June.
    8. Giovanni Mellace & Alessandra Pasquini, 2022. "Mediation Analysis Synthetic Control," Temi di discussione (Economic working papers) 1389, Bank of Italy, Economic Research and International Relations Area.
    9. Matthew G. Cox & Yasemin Kisbu-Sakarya & Milica MioÄ ević & David P. MacKinnon, 2013. "Sensitivity Plots for Confounder Bias in the Single Mediator Model," Evaluation Review, , vol. 37(5), pages 405-431, October.
    10. Martin Huber & Michael Lechner & Giovanni Mellace, 2016. "The Finite Sample Performance of Estimators for Mediation Analysis Under Sequential Conditional Independence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 139-160, January.
    11. Deborah Peikes & Grace Anglin & Erin Fries Taylor & Stacy Dale & Ann O'Malley & Arkadipta Ghosh & Kaylyn Swankoski & Lara Converse & Rosalind Keith & Mariel Finucane & Jesse Crosson & Anne Mutti & Tho, "undated". "Evaluation of the Comprehensive Primary Care Initiative: Third Annual Report," Mathematica Policy Research Reports 70714de1cb3d4620a5957f68d, Mathematica Policy Research.
    12. Xu Qin & Jonah Deutsch & Guanglei Hong, 2021. "Unpacking Complex Mediation Mechanisms And Their Heterogeneity Between Sites In A Job Corps Evaluation," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 40(1), pages 158-190, January.
    13. Colin Cannonier, 2009. "State Abstinence Education Programs and Teen Fertility in the U.S," Departmental Working Papers 2009-14, Department of Economics, Louisiana State University.
    14. Kari Lock Morgan & Donald B. Rubin, 2015. "Rerandomization to Balance Tiers of Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1412-1421, December.
    15. Nicholas Voorhees & Justin C. Ortagus & Erica Marti, 2023. "Give It a Swirl? An Examination of the Influence of 4-Year Students Taking Entry-Level Math Courses at the Local Community College," Research in Higher Education, Springer;Association for Institutional Research, vol. 64(1), pages 147-173, February.
    16. Kenneth Fortson & Natalya Verbitsky-Savitz & Emma Kopa & Philip Gleason, 2012. "Using an Experimental Evaluation of Charter Schools to Test Whether Nonexperimental Comparison Group Methods Can Replicate Experimental Impact Estimates," Mathematica Policy Research Reports 27f871b5b7b94f3a80278a593, Mathematica Policy Research.
    17. Rezaei, Ehsan Eyshi & Gaiser, Thomas, 2017. "Change in crop management strategies could double the maize yield in Africa," Discussion Papers 260154, University of Bonn, Center for Development Research (ZEF).
    18. Jean Stockard, 2013. "Merging the accountability and scientific research requirements of the No Child Left Behind Act: using cohort control groups," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(4), pages 2225-2257, June.
    19. Li, Fanlue & He, Ke & Wang, Yuejie & Zhang, Junbiao, 2021. "Does Indoor Air Pollution from Solid Fuels Influence the Mental Health of Rural Residents? Evidence from China," 2021 Conference, August 17-31, 2021, Virtual 315024, International Association of Agricultural Economists.
    20. Nicholas Weller & Jeb Barnes, 2016. "Pathway Analysis and the Search for Causal Mechanisms," Sociological Methods & Research, , vol. 45(3), pages 424-457, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:43:y:2018:i:1:p:32-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.