A new K-means singular value decomposition method based on self-adaptive matching pursuit and its application in fault diagnosis of rolling bearing weak fault
Author
Abstract
Suggested Citation
DOI: 10.1177/1550147720920781
Download full text from publisher
References listed on IDEAS
- Jiao, Jinyang & Zhao, Ming & Lin, Jing & Liang, Kaixuan, 2019. "Hierarchical discriminating sparse coding for weak fault feature extraction of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 41-54.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bai, Ruxue & Meng, Zong & Xu, Quansheng & Fan, Fengjie, 2023. "Fractional Fourier and time domain recurrence plot fusion combining convolutional neural network for bearing fault diagnosis under variable working conditions," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
- Yang, Zhe & Baraldi, Piero & Zio, Enrico, 2022. "A method for fault detection in multi-component systems based on sparse autoencoder-based deep neural networks," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
- Guan, Yang & Meng, Zong & Sun, Dengyun & Liu, Jingbo & Fan, Fengjie, 2021. "2MNet: Multi-sensor and multi-scale model toward accurate fault diagnosis of rolling bearing," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
- Liu, Yi & Xiang, Hang & Jiang, Zhansi & Xiang, Jiawei, 2023. "Second-order transient-extracting S transform for fault feature extraction in rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
- He, Jiahui & Cheng, Zhijun & Guo, Bo, 2024. "Anomaly detection in telemetry data using a jointly optimal one-class support vector machine with dictionary learning," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
- Li, Xin & Zhong, Xiang & Shao, Haidong & Han, Te & Shen, Changqing, 2021. "Multi-sensor gearbox fault diagnosis by using feature-fusion covariance matrix and multi-Riemannian kernel ridge regression," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
- Zhou, Taotao & Han, Te & Droguett, Enrique Lopez, 2022. "Towards trustworthy machine fault diagnosis: A probabilistic Bayesian deep learning framework," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
- Lee, Jinwook & Kim, Myungyon & Ko, Jin Uk & Jung, Joon Ha & Sun, Kyung Ho & Youn, Byeng D., 2022. "Asymmetric inter-intra domain alignments (AIIDA) method for intelligent fault diagnosis of rotating machinery," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
More about this item
Keywords
Feature extraction; latent fault; rolling bearing; sparse representation; self-adaptive matching pursuit; improved K-means singular value decomposition;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:16:y:2020:i:5:p:1550147720920781. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.