Soft-computing-based false alarm reduction for hierarchical data of intrusion detection system
Author
Abstract
Suggested Citation
DOI: 10.1177/1550147719883132
Download full text from publisher
References listed on IDEAS
- Markus Goldstein & Seiichi Uchida, 2016. "A Comparative Evaluation of Unsupervised Anomaly Detection Algorithms for Multivariate Data," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-31, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yin, Sihua & Yang, Haidong & Xu, Kangkang & Zhu, Chengjiu & Zhang, Shaqing & Liu, Guosheng, 2022. "Dynamic real–time abnormal energy consumption detection and energy efficiency optimization analysis considering uncertainty," Applied Energy, Elsevier, vol. 307(C).
- Adele Ravagnani & Fabrizio Lillo & Paola Deriu & Piero Mazzarisi & Francesca Medda & Antonio Russo, 2024. "Dimensionality reduction techniques to support insider trading detection," Papers 2403.00707, arXiv.org, revised May 2024.
- Davide Nicola Continanza & Andrea del Monaco & Marco di Lucido & Daniele Figoli & Pasquale Maddaloni & Filippo Quarta & Giuseppe Turturiello, 2023.
"Stacking machine learning models for anomaly detection: comparing AnaCredit to other banking data sets,"
IFC Bulletins chapters, in: Bank for International Settlements (ed.), Data science in central banking: applications and tools, volume 59,
Bank for International Settlements.
- Pasquale Maddaloni & Davide Nicola Continanza & Andrea del Monaco & Daniele Figoli & Marco di Lucido & Filippo Quarta & Giuseppe Turturiello, 2022. "Stacking machine-learning models for anomaly detection: comparing AnaCredit to other banking datasets," Questioni di Economia e Finanza (Occasional Papers) 689, Bank of Italy, Economic Research and International Relations Area.
- Sevvandi Kandanaarachchi & Mario A Munoz & Rob J Hyndman & Kate Smith-Miles, 2018. "On normalization and algorithm selection for unsupervised outlier detection," Monash Econometrics and Business Statistics Working Papers 16/18, Monash University, Department of Econometrics and Business Statistics.
- Priyanga Dilini Talagala & Rob J Hyndman & Catherine Leigh & Kerrie Mengersen & Kate Smith-Miles, 2019. "A Feature-Based Framework for Detecting Technical Outliers in Water-Quality Data from In Situ Sensors," Monash Econometrics and Business Statistics Working Papers 1/19, Monash University, Department of Econometrics and Business Statistics.
- Cian Ryan & Finbarr Murphy & Martin Mullins, 2019. "Semiautonomous Vehicle Risk Analysis: A Telematics‐Based Anomaly Detection Approach," Risk Analysis, John Wiley & Sons, vol. 39(5), pages 1125-1140, May.
- Elmira Asadi-Fard & Samereh Falahatkar & Mahdi Tanha Ziyarati & Xiaodong Zhang & Mariapia Faruolo, 2023. "Assessment of RXD Algorithm Capability for Gas Flaring Detection through OLI-SWIR Channels," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
- Kenichiro Nagata & Toshikazu Tsuji & Kimitaka Suetsugu & Kayoko Muraoka & Hiroyuki Watanabe & Akiko Kanaya & Nobuaki Egashira & Ichiro Ieiri, 2021. "Detection of overdose and underdose prescriptions—An unsupervised machine learning approach," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-14, November.
- Shuo Xu & Liyuan Hao & Xin An & Dongsheng Zhai & Hongshen Pang, 2019. "Types of DOI errors of cited references in Web of Science with a cleaning method," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(3), pages 1427-1437, September.
- Milan Miric & Hakan Ozalp & Erdem Dogukan Yilmaz, 2023. "Trade‐offs to using standardized tools: Innovation enablers or creativity constraints?," Strategic Management Journal, Wiley Blackwell, vol. 44(4), pages 909-942, April.
- Erkuş, Ekin Can & Purutçuoğlu, Vilda, 2021. "Outlier detection and quasi-periodicity optimization algorithm: Frequency domain based outlier detection (FOD)," European Journal of Operational Research, Elsevier, vol. 291(2), pages 560-574.
- Perwez, Usama & Yamaguchi, Yohei & Ma, Tao & Dai, Yanjun & Shimoda, Yoshiyuki, 2022. "Multi-scale GIS-synthetic hybrid approach for the development of commercial building stock energy model," Applied Energy, Elsevier, vol. 323(C).
- Taha Yehia & Ali Wahba & Sondos Mostafa & Omar Mahmoud, 2022. "Suitability of Different Machine Learning Outlier Detection Algorithms to Improve Shale Gas Production Data for Effective Decline Curve Analysis," Energies, MDPI, vol. 15(23), pages 1-25, November.
- Timothy DeLise, 2023. "Deep Semi-Supervised Anomaly Detection for Finding Fraud in the Futures Market," Papers 2309.00088, arXiv.org.
- VANHOEYVELD, Jellis & MARTENS, David, 2018. "Towards a scalable anomaly detection with pseudo-optimal hyperparameters," Working Papers 2018012, University of Antwerp, Faculty of Business and Economics.
- Wordliczek Lukasz, 2021. "Between incrementalism and punctuated equilibrium: the case of budget in Poland, 1995–2018," Central European Journal of Public Policy, Sciendo, vol. 15(2), pages 14-30, December.
- Priyanga Dilini Talagala & Rob J Hyndman & Kate Smith-Miles, 2019. "Anomaly Detection in High Dimensional Data," Monash Econometrics and Business Statistics Working Papers 20/19, Monash University, Department of Econometrics and Business Statistics.
- Piero Mazzarisi & Adele Ravagnani & Paola Deriu & Fabrizio Lillo & Francesca Medda & Antonio Russo, 2022. "A machine learning approach to support decision in insider trading detection," Papers 2212.05912, arXiv.org.
- Ruhi Kiran Bajaj & Rebecca Mary Meiring & Fernando Beltran, 2023. "Co-Design, Development, and Evaluation of a Health Monitoring Tool Using Smartwatch Data: A Proof-of-Concept Study," Future Internet, MDPI, vol. 15(3), pages 1-15, March.
- Chatterjee, Joyjit & Dethlefs, Nina, 2021. "Scientometric review of artificial intelligence for operations & maintenance of wind turbines: The past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
More about this item
Keywords
Anomaly detection; intrusion detection system; hierarchal data; soft computing; classification;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:15:y:2019:i:10:p:1550147719883132. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.