IDEAS home Printed from https://ideas.repec.org/a/sae/globus/v14y2013i3p373-384.html
   My bibliography  Save this article

A Descriptive Study of Credit Card Fraud Pattern

Author

Listed:
  • Sanjeev Jha

    (Sanjeev Jha is Assistant Professor, Department of Decision Sciences, Whittemore School of Business and Economics, University of New Hampshire, McConnell Hall, Durham, New Hampshire, USA. E-mail: sanjeev.jha@unh.edu)

  • J. Christopher Westland

    (J. Christopher Westland is Professor and Head, Department of Information & Decision Sciences, University of Illinois-Chicago, Chicago, USA. E-mail: westland@uic.edu)

Abstract

We analyzed a dataset of fraudulent credit card transactions to uncover patterns in fraudulent transactions and to demonstrate the importance of focusing on suspicious transactions. We argue that revealed patterns in fraudulent transactions may help financial institutions update their practices and develop innovative mechanisms and systems to improve their performance at preventing and detecting credit card frauds.

Suggested Citation

  • Sanjeev Jha & J. Christopher Westland, 2013. "A Descriptive Study of Credit Card Fraud Pattern," Global Business Review, International Management Institute, vol. 14(3), pages 373-384, September.
  • Handle: RePEc:sae:globus:v:14:y:2013:i:3:p:373-384
    DOI: 10.1177/0972150913494713
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0972150913494713
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0972150913494713?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. D. J. Hand & W. E. Henley, 1997. "Statistical Classification Methods in Consumer Credit Scoring: a Review," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 160(3), pages 523-541, September.
    2. D J Hand & C Whitrow & N M Adams & P Juszczak & D Weston, 2008. "Performance criteria for plastic card fraud detection tools," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(7), pages 956-962, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Namrata Sandhu, 2020. "Behavioural Red Flags of Fraud: An Ex Post Assessment of Types and Frequencies," Global Business Review, International Management Institute, vol. 21(2), pages 507-525, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Finlay, Steven, 2010. "Credit scoring for profitability objectives," European Journal of Operational Research, Elsevier, vol. 202(2), pages 528-537, April.
    2. Dangxing Chen & Weicheng Ye & Jiahui Ye, 2022. "Interpretable Selective Learning in Credit Risk," Papers 2209.10127, arXiv.org.
    3. Jonathan K. Budd & Peter G. Taylor, 2015. "Calculating optimal limits for transacting credit card customers," Papers 1506.05376, arXiv.org, revised Aug 2015.
    4. Dinh, K. & Kleimeier, S., 2006. "Credit scoring for Vietnam's retail banking market : implementation and implications for transactional versus relationship lending," Research Memorandum 012, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    5. Ulf Römer & Oliver Musshoff, 2017. "Can agricultural credit scoring for microfinance institutions be implemented and improved by weather data?," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 78(1), pages 83-97, December.
    6. Kraft, Holger & Kroisandt, Gerald & Müller, Marlene, 2002. "Assessing the discriminatory power of credit scores," SFB 373 Discussion Papers 2002,67, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    7. Chen Ying & Härdle Wolfgang K. & He Qiang & Majer Piotr, 2018. "Risk related brain regions detection and individual risk classification with 3D image FPCA," Statistics & Risk Modeling, De Gruyter, vol. 35(3-4), pages 89-110, July.
    8. Sun, Weixin & Zhang, Xuantao & Li, Minghao & Wang, Yong, 2023. "Interpretable high-stakes decision support system for credit default forecasting," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    9. Thomas Wainwright, 2011. "Elite Knowledges: Framing Risk and the Geographies of Credit," Environment and Planning A, , vol. 43(3), pages 650-665, March.
    10. Roy Cerqueti & Francesca Pampurini & Annagiulia Pezzola & Anna Grazia Quaranta, 2022. "Dangerous liasons and hot customers for banks," Review of Quantitative Finance and Accounting, Springer, vol. 59(1), pages 65-89, July.
    11. R T Stewart, 2011. "A profit-based scoring system in consumer credit: making acquisition decisions for credit cards," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(9), pages 1719-1725, September.
    12. Rasa Kanapickiene & Renatas Spicas, 2019. "Credit Risk Assessment Model for Small and Micro-Enterprises: The Case of Lithuania," Risks, MDPI, vol. 7(2), pages 1-23, June.
    13. Rodrigo Alfaro A. & David Pacheco L. & Andrés Sagner T, 2011. "Dinámica de la Tasa de Incumplimiento de Créditos de Consumo en Cuotas," Notas de Investigación Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 14(2), pages 119-124, August.
    14. Theuri, Joseph & Olukuru, John, 2022. "The impact of Artficial Intelligence and how it is shaping banking," KBA Centre for Research on Financial Markets and Policy Working Paper Series 61, Kenya Bankers Association (KBA).
    15. Zhiyong Li & Xinyi Hu & Ke Li & Fanyin Zhou & Feng Shen, 2020. "Inferring the outcomes of rejected loans: an application of semisupervised clustering," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 631-654, February.
    16. K Rajaratnam & P Beling & G Overstreet, 2010. "Scoring decisions in the context of economic uncertainty," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(3), pages 421-429, March.
    17. Richard Chamboko & Jorge M. Bravo, 2016. "On the modelling of prognosis from delinquency to normal performance on retail consumer loans," Risk Management, Palgrave Macmillan, vol. 18(4), pages 264-287, December.
    18. Adnan Dželihodžić & Dženana Đonko & Jasmin Kevrić, 2018. "Improved Credit Scoring Model Based on Bagging Neural Network," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(06), pages 1725-1741, November.
    19. Manuel Hernandez & Maximo Torero, 2014. "Parametric versus nonparametric methods in risk scoring: an application to microcredit," Empirical Economics, Springer, vol. 46(3), pages 1057-1079, May.
    20. Renaud Bourlès & Anastasia Cozarenco & Dominique Henriet & Xavier Joutard, 2022. "Business Training with a Better-Informed Lender: Theory and Evidence from Microcredit in France," Annals of Economics and Statistics, GENES, issue 148, pages 65-108.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:globus:v:14:y:2013:i:3:p:373-384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: http://www.imi.edu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.