IDEAS home Printed from https://ideas.repec.org/a/sae/evarev/v42y2018i1p111-143.html
   My bibliography  Save this article

Comparative Regression Discontinuity: A Stress Test With Small Samples

Author

Listed:
  • Yasemin Kisbu-Sakarya
  • Thomas D. Cook
  • Yang Tang
  • M. H. Clark

Abstract

Compared to the randomized experiment (RE), the regression discontinuity design (RDD) has three main limitations: (1) In expectation, its results are unbiased only at the treatment cutoff and not for the entire study population; (2) it is less efficient than the RE and so requires more cases for the same statistical power; and (3) it requires correctly specifying the functional form that relates the assignment and outcome variables. One way to overcome these limitations might be to add a no-treatment functional form to the basic RDD and including it in the outcome analysis as a comparison function rather than as a covariate to increase power. Doing this creates a comparative regression discontinuity design (CRD). It has three untreated regression lines. Two are in the untreated segment of the RDD—the usual RDD one and the added untreated comparison function—while the third is in the treated RDD segment. Also observed is the treated regression line in the treated segment. Recent studies comparing RE, RDD, and CRD causal estimates have found that CRD reduces imprecision compared to RDD and also produces valid causal estimates at the treatment cutoff and also along all the rest of the assignment variable. The present study seeks to replicate these results, but with considerably smaller sample sizes. The power difference between RDD and CRD is replicated, but not the bias results either at the treatment cutoff or away from it. We conclude that CRD without large samples can be dangerous.

Suggested Citation

  • Yasemin Kisbu-Sakarya & Thomas D. Cook & Yang Tang & M. H. Clark, 2018. "Comparative Regression Discontinuity: A Stress Test With Small Samples," Evaluation Review, , vol. 42(1), pages 111-143, February.
  • Handle: RePEc:sae:evarev:v:42:y:2018:i:1:p:111-143
    DOI: 10.1177/0193841X18776881
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0193841X18776881
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0193841X18776881?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. repec:mpr:mprres:6683 is not listed on IDEAS
    2. Shadish, William R. & Clark, M. H. & Steiner, Peter M., 2008. "Can Nonrandomized Experiments Yield Accurate Answers? A Randomized Experiment Comparing Random and Nonrandom Assignments," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1334-1344.
    3. Rubin, Donald B., 2008. "Comment: The Design and Analysis of Gold Standard Randomized Experiments," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1350-1353.
    4. McEwan, Patrick J., 2013. "The impact of Chile's school feeding program on education outcomes," Economics of Education Review, Elsevier, vol. 32(C), pages 122-139.
    5. Yang Tang & Thomas D. Cook & Yasemin Kisbu-Sakarya & Heinrich Hock & Hanley Chiang, 2017. "The Comparative Regression Discontinuity (CRD) Design: An Overview and Demonstration of its Performance Relative to Basic RD and the Randomized Experiment," Advances in Econometrics, in: Regression Discontinuity Designs, volume 38, pages 237-279, Emerald Group Publishing Limited.
    6. Elder, Todd E., 2010. "The importance of relative standards in ADHD diagnoses: Evidence based on exact birth dates," Journal of Health Economics, Elsevier, vol. 29(5), pages 641-656, September.
    7. Andrew Gelman & Guido Imbens, 2019. "Why High-Order Polynomials Should Not Be Used in Regression Discontinuity Designs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(3), pages 447-456, July.
    8. Joshua D. Angrist & Miikka Rokkanen, 2015. "Wanna Get Away? Regression Discontinuity Estimation of Exam School Effects Away From the Cutoff," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1331-1344, December.
    9. Hahn, Jinyong & Todd, Petra & Van der Klaauw, Wilbert, 2001. "Identification and Estimation of Treatment Effects with a Regression-Discontinuity Design," Econometrica, Econometric Society, vol. 69(1), pages 201-209, January.
    10. Rebecca A. Maynard & Kenneth A. Couch & Coady Wing & Thomas D. Cook, 2013. "Strengthening The Regression Discontinuity Design Using Additional Design Elements: A Within‐Study Comparison," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 32(4), pages 853-877, September.
    11. Jonathan Guryan, 2001. "Does Money Matter? Regression-Discontinuity Estimates from Education Finance Reform in Massachusetts," NBER Working Papers 8269, National Bureau of Economic Research, Inc.
    12. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    2. Cingano, Federico & Palomba, Filippo & Pinotti, Paolo & Rettore, Enrico, 2023. "Granting more bang for the buck: The heterogeneous effects of firm subsidies," Labour Economics, Elsevier, vol. 83(C).
    3. Yang Tang & Thomas D. Cook, 2018. "Statistical Power for the Comparative Regression Discontinuity Design With a Pretest No-Treatment Control Function: Theory and Evidence From the National Head Start Impact Study," Evaluation Review, , vol. 42(1), pages 71-110, February.
    4. Matias D. Cattaneo & Rocío Titiunik, 2022. "Regression Discontinuity Designs," Annual Review of Economics, Annual Reviews, vol. 14(1), pages 821-851, August.
    5. Dor Leventer & Daniel Nevo, 2024. "Correcting invalid regression discontinuity designs with multiple time period data," Papers 2408.05847, arXiv.org.
    6. Matias D. Cattaneo & Luke Keele & Rocio Titiunik, 2021. "Covariate Adjustment in Regression Discontinuity Designs," Papers 2110.08410, arXiv.org, revised Aug 2022.
    7. Vivian C. Wong & Peter M. Steiner & Kylie L. Anglin, 2018. "What Can Be Learned From Empirical Evaluations of Nonexperimental Methods?," Evaluation Review, , vol. 42(2), pages 147-175, April.
    8. Ari Hyytinen & Jaakko Meriläinen & Tuukka Saarimaa & Otto Toivanen & Janne Tukiainen, 2018. "When does regression discontinuity design work? Evidence from random election outcomes," Quantitative Economics, Econometric Society, vol. 9(2), pages 1019-1051, July.
    9. Jill Furzer & Elizabeth Dhuey & Audrey Laporte, 2022. "ADHD misdiagnosis: Causes and mitigators," Health Economics, John Wiley & Sons, Ltd., vol. 31(9), pages 1926-1953, September.
    10. Matias D. Cattaneo & Luke Keele & Rocío Titiunik & Gonzalo Vazquez-Bare, 2021. "Extrapolating Treatment Effects in Multi-Cutoff Regression Discontinuity Designs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1941-1952, October.
    11. Mauricio Villamizar‐Villegas & Freddy A. Pinzon‐Puerto & Maria Alejandra Ruiz‐Sanchez, 2022. "A comprehensive history of regression discontinuity designs: An empirical survey of the last 60 years," Journal of Economic Surveys, Wiley Blackwell, vol. 36(4), pages 1130-1178, September.
    12. Federico Cingano & Filippo Palomba & Paolo Pinotti & Enrico Rettore, 2022. "Making Subsidies Work: Rules vs. Discretion," CESifo Working Paper Series 9560, CESifo.
    13. Ciancio, Alberto & Kämpfen, Fabrice & Kohler, Hans-Peter & Kohler, Iliana V., 2021. "Health screening for emerging non-communicable disease burdens among the global poor: Evidence from sub-Saharan Africa," Journal of Health Economics, Elsevier, vol. 75(C).
    14. David Wuepper & Robert Finger, 2023. "Regression discontinuity designs in agricultural and environmental economics," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 50(1), pages 1-28.
    15. Babii, Andrii & Kumar, Rohit, 2023. "Isotonic regression discontinuity designs," Journal of Econometrics, Elsevier, vol. 234(2), pages 371-393.
    16. Hong Kai, 2017. "School Bond Referendum, Capital Expenditure, and Student Achievement," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 17(4), pages 1-26, October.
    17. Kettlewell, Nathan & Siminski, Peter, 2020. "Optimal Model Selection in RDD and Related Settings Using Placebo Zones," IZA Discussion Papers 13639, Institute of Labor Economics (IZA).
    18. Philip Gleason & Alexandra Resch & Jillian Berk, 2018. "RD or Not RD: Using Experimental Studies to Assess the Performance of the Regression Discontinuity Approach," Evaluation Review, , vol. 42(1), pages 3-33, February.
    19. Eduardo Fé, 2021. "Pension eligibility rules and the local causal effect of retirement on cognitive functioning," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 812-841, July.
    20. Yiwei Sun, 2023. "Extrapolating Away from the Cutoff in Regression Discontinuity Designs," Papers 2311.18136, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:evarev:v:42:y:2018:i:1:p:111-143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.