IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v49y2022i5p1464-1488.html
   My bibliography  Save this article

Planning decentralized urban renewable energy systems using algal cultivation for closed-loop and resilient communities

Author

Listed:
  • Steven Jige Quan
  • Soowon Chang
  • Daniel Castro-Lacouture
  • Thomas K Igou
  • Florina Dutt
  • Jiaqi Ding
  • Yongsheng Chen
  • Perry Pei-Ju Yang

Abstract

To tackle climate challenges, communities need to harvest renewable energy and resources on site locally to close the loops for enhancing the resilience of communities facing unpredictable and uncertain future changes. A decentralization planning of urban renewable energy systems is proposed by treating urban waste streams and producing biomass through applying algal biotechnology. When applying algal technology as a renewable and decentralized energy source in urban systems, the overall performance can vary by levels of urban nutrients, solar and CO 2 resources, and the transportation cost when considering its application to different urban densities, urban form, and the spatial scale of urban settings. This research explores three potential impacts on the algal system’s energy performance: (1) urban density, (2) urban form in different contexts, and (3) spatial scale. The research examines the impacts by testing urban settings given in actual contexts in Atlanta, Georgia, USA. Four neighborhoods representing the high-density urban, mid-density urban, mixed suburban, and typical suburban areas are investigated. The density-scale–performance relationships are explored through testing different urban forms of neighborhoods in both hypothetical and actual neighborhood settings. A GIS-based model is developed to estimate the overall energy performance of the decentralized renewable energy system in urban environments. Results show that the energy performance is positive mainly for high-density urban neighborhoods with small-to-medium scales, up to 0.36 MJ per ton of municipal solid wastes for actual settings and 0.37 MJ for hypothetical cases. Neighborhoods with higher density have higher energy performance while up scaling has negative effects on the energy performance with a low degree of significance. Optimal scales are found as a 1-km radius in real test beds and 1.3 km in hypothetical settings, in which the results show trade-offs between scaling effects in the system efficiency gain and the transportation cost increase.

Suggested Citation

  • Steven Jige Quan & Soowon Chang & Daniel Castro-Lacouture & Thomas K Igou & Florina Dutt & Jiaqi Ding & Yongsheng Chen & Perry Pei-Ju Yang, 2022. "Planning decentralized urban renewable energy systems using algal cultivation for closed-loop and resilient communities," Environment and Planning B, , vol. 49(5), pages 1464-1488, June.
  • Handle: RePEc:sae:envirb:v:49:y:2022:i:5:p:1464-1488
    DOI: 10.1177/23998083221101713
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/23998083221101713
    Download Restriction: no

    File URL: https://libkey.io/10.1177/23998083221101713?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rawat, I. & Ranjith Kumar, R. & Mutanda, T. & Bux, F., 2011. "Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production," Applied Energy, Elsevier, vol. 88(10), pages 3411-3424.
    2. Ehimen, E.A. & Sun, Z.F. & Carrington, C.G. & Birch, E.J. & Eaton-Rye, J.J., 2011. "Anaerobic digestion of microalgae residues resulting from the biodiesel production process," Applied Energy, Elsevier, vol. 88(10), pages 3454-3463.
    3. Yang, Perry Pei-Ju & Quan, Steven Jige & Castro-Lacouture, Daniel & Stuart, Ben J., 2018. "A Geodesign method for managing a closed-loop urban system through algae cultivation," Applied Energy, Elsevier, vol. 231(C), pages 1372-1382.
    4. Perera, A.T.D. & Javanroodi, Kavan & Nik, Vahid M., 2021. "Climate resilient interconnected infrastructure: Co-optimization of energy systems and urban morphology," Applied Energy, Elsevier, vol. 285(C).
    5. Brennan, Liam & Owende, Philip, 2010. "Biofuels from microalgae--A review of technologies for production, processing, and extractions of biofuels and co-products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 557-577, February.
    6. Gnansounou, Edgard & Kenthorai Raman, Jegannathan, 2016. "Life cycle assessment of algae biodiesel and its co-products," Applied Energy, Elsevier, vol. 161(C), pages 300-308.
    7. Chen, Cheng & Guo, Wenshan & Ngo, Huu Hao & Lee, Duu-Jong & Tung, Kuo-Lun & Jin, Pengkang & Wang, Jie & Wu, Yun, 2016. "Challenges in biogas production from anaerobic membrane bioreactors," Renewable Energy, Elsevier, vol. 98(C), pages 120-134.
    8. Razon, Luis F. & Tan, Raymond R., 2011. "Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis," Applied Energy, Elsevier, vol. 88(10), pages 3507-3514.
    9. Kotzebue, Julia R. & Bressers, Hans Th.A. & Yousif, Charles, 2010. "Spatial misfits in a multi-level renewable energy policy implementation process on the Small Island State of Malta," Energy Policy, Elsevier, vol. 38(10), pages 5967-5976, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Wrana & Wojciech Struzik & Katarzyna Jaromin-Gleń & Piotr Gleń, 2023. "FCH HVAC Honeycomb Ring Network—Transition from Traditional Power Supply Systems in Existing and Revitalized Areas," Energies, MDPI, vol. 16(24), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prajapati, Sanjeev Kumar & Malik, Anushree & Vijay, Virendra Kumar, 2014. "Comparative evaluation of biomass production and bioenergy generation potential of Chlorella spp. through anaerobic digestion," Applied Energy, Elsevier, vol. 114(C), pages 790-797.
    2. Singh, Bhaskar & Guldhe, Abhishek & Rawat, Ismail & Bux, Faizal, 2014. "Towards a sustainable approach for development of biodiesel from plant and microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 216-245.
    3. Montingelli, M.E. & Tedesco, S. & Olabi, A.G., 2015. "Biogas production from algal biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 961-972.
    4. Lucas Reijnders, 2013. "Lipid‐based liquid biofuels from autotrophic microalgae: energetic and environmental performance," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(1), pages 73-85, January.
    5. Cuevas-Castillo, Gabriela A. & Navarro-Pineda, Freddy S. & Baz Rodríguez, Sergio A. & Sacramento Rivero, Julio C., 2020. "Advances on the processing of microalgal biomass for energy-driven biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    6. Soratana, Kullapa & Khanna, Vikas & Landis, Amy E., 2013. "Re-envisioning the renewable fuel standard to minimize unintended consequences: A comparison of microalgal diesel with other biodiesels," Applied Energy, Elsevier, vol. 112(C), pages 194-204.
    7. Lim, Juin Yau & Teng, Sin Yong & How, Bing Shen & Nam, KiJeon & Heo, SungKu & Máša, Vítězslav & Stehlík, Petr & Yoo, Chang Kyoo, 2022. "From microalgae to bioenergy: Identifying optimally integrated biorefinery pathways and harvest scheduling under uncertainties in predicted climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Kumar, Kanhaiya & Ghosh, Supratim & Angelidaki, Irini & Holdt, Susan L. & Karakashev, Dimitar B. & Morales, Merlin Alvarado & Das, Debabrata, 2016. "Recent developments on biofuels production from microalgae and macroalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 235-249.
    9. Florentino de Souza Silva, Anna Patrícya & Costa, Mayara Carantino & Colzi Lopes, Alexandre & Fares Abdala Neto, Eliezer & Carrhá Leitão, Renato & Mota, César Rossas & Bezerra dos Santos, André, 2014. "Comparison of pretreatment methods for total lipids extraction from mixed microalgae," Renewable Energy, Elsevier, vol. 63(C), pages 762-766.
    10. Kligerman, Debora Cynamon & Bouwer, Edward J., 2015. "Prospects for biodiesel production from algae-based wastewater treatment in Brazil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1834-1846.
    11. Merrylin Jayaseelan & Mohamed Usman & Adishkumar Somanathan & Sivashanmugam Palani & Gunasekaran Muniappan & Rajesh Banu Jeyakumar, 2021. "Microalgal Production of Biofuels Integrated with Wastewater Treatment," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
    12. Manara, P. & Zabaniotou, A., 2012. "Towards sewage sludge based biofuels via thermochemical conversion – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2566-2582.
    13. Kao, Chien-Ya & Chiu, Sheng-Yi & Huang, Tzu-Ting & Dai, Le & Hsu, Ling-Kang & Lin, Chih-Sheng, 2012. "Ability of a mutant strain of the microalga Chlorella sp. to capture carbon dioxide for biogas upgrading," Applied Energy, Elsevier, vol. 93(C), pages 176-183.
    14. Maria I. Silva & Ana L. Gonçalves & Vítor J. P. Vilar & José C. M. Pires, 2021. "Experimental and Techno-Economic Study on the Use of Microalgae for Paper Industry Effluents Remediation," Sustainability, MDPI, vol. 13(3), pages 1-29, January.
    15. Sharma, Yogesh Chandra & Singh, Veena, 2017. "Microalgal biodiesel: A possible solution for India’s energy security," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 72-88.
    16. Pragya, Namita & Pandey, Krishan K., 2016. "Life cycle assessment of green diesel production from microalgae," Renewable Energy, Elsevier, vol. 86(C), pages 623-632.
    17. Attila Bai & József Popp & Károly Pető & Irén Szőke & Mónika Harangi-Rákos & Zoltán Gabnai, 2017. "The Significance of Forests and Algae in CO 2 Balance: A Hungarian Case Study," Sustainability, MDPI, vol. 9(5), pages 1-24, May.
    18. Amber Broch & Umakanta Jena & S. Kent Hoekman & Joel Langford, 2013. "Analysis of Solid and Aqueous Phase Products from Hydrothermal Carbonization of Whole and Lipid-Extracted Algae," Energies, MDPI, vol. 7(1), pages 1-18, December.
    19. Mohan, Natarajan & Rao, Polur Hanumantha & Boopathy, Annakkili Baskara & Rengasamy, Ramasamy & Chinnasamy, Senthil, 2021. "A sustainable process train for a marine microalga-mediated biomass production and CO2 capture: A pilot-scale cultivation of Nannochloropsis salina in open raceway ponds and harvesting through electro," Renewable Energy, Elsevier, vol. 173(C), pages 263-272.
    20. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Hazrat, M.A., 2015. "Prospect of biofuels as an alternative transport fuel in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 331-351.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:49:y:2022:i:5:p:1464-1488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.