IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v40y2013i5p846-864.html
   My bibliography  Save this article

Modeling the Effects of an Urban Growth Boundary on Vehicle Travel in a Small Metropolitan Area

Author

Listed:
  • Dale Ellen Azaria
  • Austin Troy
  • Brian H Y Lee

    (School of Engineering, University of Vermont, Burlington, VT 05405, USA)

  • Curtis Ventriss
  • Brian Voigt

Abstract

An integrated land-use–transportation model was used to simulate the impact that an urban growth boundary would have on vehicle miles of travel in a small metropolitan community over a forty-year modeling horizon. The results of the modeling effort indicate that even in an area with low to moderate population growth, there is the potential to reduce vehicle miles of travel per person by as much as 25% from a business-as-usual scenario over a forty-year period. The reduction would result primarily from a shift of driving alone to carpooling or walking for many trips. A scenario in which growth is concentrated in a single urban core would also benefit from shorter average trip lengths; a scenario with multiple village centers would not have shorter trip lengths, but would still have significant improvements in total vehicle miles of travel.

Suggested Citation

  • Dale Ellen Azaria & Austin Troy & Brian H Y Lee & Curtis Ventriss & Brian Voigt, 2013. "Modeling the Effects of an Urban Growth Boundary on Vehicle Travel in a Small Metropolitan Area," Environment and Planning B, , vol. 40(5), pages 846-864, October.
  • Handle: RePEc:sae:envirb:v:40:y:2013:i:5:p:846-864
    DOI: 10.1068/b38182
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1068/b38182
    Download Restriction: no

    File URL: https://libkey.io/10.1068/b38182?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Patricia L. Mokhtarian & Michael N. Bagley, 2002. "The impact of residential neighborhood type on travel behavior: A structural equations modeling approach," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 36(2), pages 279-297.
    2. Heres-Del-Valle, David & Niemeier, Deb, 2011. "CO2 emissions: Are land-use changes enough for California to reduce VMT? Specification of a two-part model with instrumental variables," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 150-161, January.
    3. Rodier, Caroline J., 2009. "A Review of the International Modeling Literature: Transit, Land Use, and Auto Pricing Strategies to Reduce Vehicle Miles Traveled and Greenhouse Gas Emissions," Institute of Transportation Studies, Working Paper Series qt2jh2m3ps, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhigang Li & Jialong Zhong & Zishu Sun & Wunian Yang, 2017. "Spatial Pattern of Carbon Sequestration and Urban Sustainability: Analysis of Land-Use and Carbon Emission in Guang’an, China," Sustainability, MDPI, vol. 9(11), pages 1-24, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying Huang & Yongli Zhang & Feifan Deng & Daiqing Zhao & Rong Wu, 2022. "Impacts of Built-Environment on Carbon Dioxide Emissions from Traffic: A Systematic Literature Review," IJERPH, MDPI, vol. 19(24), pages 1-17, December.
    2. Woldeamanuel, Mintesnot & Kent, Andrew, 2014. "Determinants of Per Capita Vehicle Miles Traveled (VMT): The Case of California," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 53(3).
    3. Kamruzzaman, Md. & Baker, Douglas & Washington, Simon & Turrell, Gavin, 2013. "Residential dissonance and mode choice," Journal of Transport Geography, Elsevier, vol. 33(C), pages 12-28.
    4. Li, Jingjing & Kim, Changjoo & Sang, Sunhee, 2018. "Exploring impacts of land use characteristics in residential neighborhood and activity space on non-work travel behaviors," Journal of Transport Geography, Elsevier, vol. 70(C), pages 141-147.
    5. Ding, Yu & Lu, Huapu, 2016. "Activity participation as a mediating variable to analyze the effect of land use on travel behavior: A structural equation modeling approach," Journal of Transport Geography, Elsevier, vol. 52(C), pages 23-28.
    6. Chetan Doddamani & M. Manoj, 2023. "Analysis of the influences of built environment measures on household car and motorcycle ownership decisions in Hubli-Dharwad cities," Transportation, Springer, vol. 50(1), pages 205-243, February.
    7. Scheiner, Joachim & Holz-Rau, Christian, 2013. "A comprehensive study of life course, cohort, and period effects on changes in travel mode use," Transportation Research Part A: Policy and Practice, Elsevier, vol. 47(C), pages 167-181.
    8. Morikawa, Masayuki, 2012. "Population density and efficiency in energy consumption: An empirical analysis of service establishments," Energy Economics, Elsevier, vol. 34(5), pages 1617-1622.
    9. Scheiner, Joachim, 2010. "Social inequalities in travel behaviour: trip distances in the context of residential self-selection and lifestyles," Journal of Transport Geography, Elsevier, vol. 18(6), pages 679-690.
    10. van de Coevering, Paul & Maat, Kees & van Wee, Bert, 2018. "Residential self-selection, reverse causality and residential dissonance. A latent class transition model of interactions between the built environment, travel attitudes and travel behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 466-479.
    11. Faizeh Hatami & Jean-Claude Thill, 2022. "Spatiotemporal Evaluation of the Built Environment’s Impact on Commuting Duration," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    12. Kim, Seheon & Rasouli, Soora, 2022. "The influence of latent lifestyle on acceptance of Mobility-as-a-Service (MaaS): A hierarchical latent variable and latent class approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 304-319.
    13. Zhenhua Chen & Laurie A. Schintler, 2023. "Rediscovering regional science: Positioning the field's evolving location in science and society," Journal of Regional Science, Wiley Blackwell, vol. 63(3), pages 617-642, June.
    14. Wenjia Zhang, 2016. "Does compact land use trigger a rise in crime and a fall in ridership? A role for crime in the land use–travel connection," Urban Studies, Urban Studies Journal Limited, vol. 53(14), pages 3007-3026, November.
    15. Van Acker, Veronique & Witlox, Frank, 2010. "Car ownership as a mediating variable in car travel behaviour research using a structural equation modelling approach to identify its dual relationship," Journal of Transport Geography, Elsevier, vol. 18(1), pages 65-74.
    16. Thomas Schofield & Melissa Merrick & Chia-Feng Chen, 2016. "Reciprocal Associations between Neighborhood Context and Parent Investments: Selection Effects in Two Longitudinal Samples," Working Papers wp16-08-ff, Princeton University, School of Public and International Affairs, Center for Research on Child Wellbeing..
    17. Guan, Xiaodong & Wang, Donggen, 2019. "Influences of the built environment on travel: A household-based perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 710-724.
    18. Tikoudis, Ioannis & Verhoef, Erik T. & van Ommeren, Jos N., 2018. "Second-best urban tolls in a monocentric city with housing market regulations," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 342-359.
    19. Guo, Zhan, 2013. "Does residential parking supply affect household car ownership? The case of New York City," Journal of Transport Geography, Elsevier, vol. 26(C), pages 18-28.
    20. de Abreu e Silva, João & Morency, Catherine & Goulias, Konstadinos G., 2012. "Using structural equations modeling to unravel the influence of land use patterns on travel behavior of workers in Montreal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(8), pages 1252-1264.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:40:y:2013:i:5:p:846-864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.