IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v32y2005i2p211-230.html
   My bibliography  Save this article

Uncertainty in Extrapolations of Predictive Land-Change Models

Author

Listed:
  • Robert Gilmore Pontius Jr
  • Joseph Spencer

Abstract

This paper gives a technique to extrapolate the anticipated accuracy of a prediction of land-use and land-cover change (LUCC) to any point in the future. The method calibrates a LUCC model with information from the past in order to simulate a map of the present, so that it can compute an objective measure of validation with empirical data. Then it uses that observed measurement of predictive accuracy to anticipate how accurately the model will predict a future landscape. The technique assumes that the accuracy of the model will decay to randomness as the model predicts farther into the future and estimates how fast the decay in accuracy will occur based on prior model performance. Results are presented graphically in terms of percentage of pixels classified correctly so that nonexperts can interpret the accuracy visually. The percentage correct is budgeted by three components: agreement due to chance, agreement due to the predicted quantity of each land category, and agreement due to the predicted location of each land category. The percentage error is budgeted by two components: disagreement due to the predicted location of each land category and disagreement due to the predicted quantity of each land category. Therefore, model users can see the sources of the accuracy and error of the model. The entire analysis is computable for multiple resolutions, so users can see how the results are sensitive to changes in scale. We illustrate the method with an application of the land-use change model Geomod to Central Massachusetts, where the predictive accuracy of the model decays to 90% over fourteen years and to near complete randomness over 200 years.

Suggested Citation

  • Robert Gilmore Pontius Jr & Joseph Spencer, 2005. "Uncertainty in Extrapolations of Predictive Land-Change Models," Environment and Planning B, , vol. 32(2), pages 211-230, April.
  • Handle: RePEc:sae:envirb:v:32:y:2005:i:2:p:211-230
    DOI: 10.1068/b31152
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1068/b31152
    Download Restriction: no

    File URL: https://libkey.io/10.1068/b31152?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert Gilmore Pontius Jr. & Aditya Agrawal & Diana Huffaker, 2003. "Estimating the uncertainty of land-cover extrapolations while constructing a raster map from tabular data," Journal of Geographical Systems, Springer, vol. 5(3), pages 253-273, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soora Rasouli & Harry Timmermans, 2013. "Probabilistic forecasting of time-dependent origin-destination matrices by a complex activity-based model system: effects of model uncertainty," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 17(3), pages 350-361, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deal, Brian & Schunk, Daniel, 2004. "Spatial dynamic modeling and urban land use transformation: a simulation approach to assessing the costs of urban sprawl," Ecological Economics, Elsevier, vol. 51(1-2), pages 79-95, November.
    2. Echeverria, Cristian & Coomes, David A. & Hall, Myrna & Newton, Adrian C., 2008. "Spatially explicit models to analyze forest loss and fragmentation between 1976 and 2020 in southern Chile," Ecological Modelling, Elsevier, vol. 212(3), pages 439-449.
    3. Jesús Guerrero-Morales & Carlos R. Fonseca & Miguel A. Goméz-Albores & María Laura Sampedro-Rosas & Sonia Emilia Silva-Gómez, 2020. "Proportional Variation of Potential Groundwater Recharge as a Result of Climate Change and Land-Use: A Study Case in Mexico," Land, MDPI, vol. 9(10), pages 1-22, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:32:y:2005:i:2:p:211-230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.