IDEAS home Printed from https://ideas.repec.org/a/sae/envira/v46y2014i2p318-336.html
   My bibliography  Save this article

Science in Carbon Economies: Debating What Counts in US Biofuel Governance

Author

Listed:
  • Sean Gillon

    (Department of Food Systems and Society, Marylhurst University, 17600 Pacific Highway, Marylhurst, OR 97036, USA)

Abstract

This paper analyzes the scientific practices that constitute carbon economies by rendering carbon countable, fungible, and governable. Examining US biofuel governance, I draw on field research and document and policy analyses to consider the roles state, private industry, and civil society actors play in negotiating scientific practice in biofuel governance and to explore the geographically uneven consequences of contrasting science–society configurations. This research illustrates the complex and contradictory roles of nature's quantification and state-supported science in carbon economies. Although nature's quantification as carbon was initially used as a technology of opposition and accountability to limit vested interest power and maintain biofuels' greenhouse gas reduction capacity, it ultimately served industry interests by focusing policy deliberation on technical issues industry deftly navigated and away from policy rationale, value conflict, and biofuels' broader social–ecological consequences. Drawing attention to state-supported environmental risk assessment and place-based approaches to integrating science and agriculture, this research describes multiple, conflicting modes of state scientific practice and emphasizes the importance of considering multiple scientific perspectives in climate change research and intervention. I argue that, rather than focusing on mitigating climate change through universal, carbon-focused science alone, future science–society configurations should include efforts to build institutional capacity for transformation and adaptation to confront uneven and changing social–ecological circumstances using site-specific scientific knowledge.

Suggested Citation

  • Sean Gillon, 2014. "Science in Carbon Economies: Debating What Counts in US Biofuel Governance," Environment and Planning A, , vol. 46(2), pages 318-336, February.
  • Handle: RePEc:sae:envira:v:46:y:2014:i:2:p:318-336
    DOI: 10.1068/a46162
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1068/a46162
    Download Restriction: no

    File URL: https://libkey.io/10.1068/a46162?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    2. Keith Warner & Kent Daane & Christina Getz & Stephen Maurano & Sandra Calderon & Kathleen Powers, 2011. "The decline of public interest agricultural science and the dubious future of crop biological control in California," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 28(4), pages 483-496, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kean Birch, 2016. "Emergent Imaginaries and Fragmented Policy Frameworks in the Canadian Bio-Economy," Sustainability, MDPI, vol. 8(10), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Canabarro, N.I. & Silva-Ortiz, P. & Nogueira, L.A.H. & Cantarella, H. & Maciel-Filho, R. & Souza, G.M., 2023. "Sustainability assessment of ethanol and biodiesel production in Argentina, Brazil, Colombia, and Guatemala," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    2. Baka, Jennifer & Roland-Holst, David, 2009. "Food or fuel? What European farmers can contribute to Europe's transport energy requirements and the Doha Round," Energy Policy, Elsevier, vol. 37(7), pages 2505-2513, July.
    3. Nguyen, Thu Lan T. & Hermansen, John E. & Mogensen, Lisbeth, 2010. "Fossil energy and GHG saving potentials of pig farming in the EU," Energy Policy, Elsevier, vol. 38(5), pages 2561-2571, May.
    4. Sarah Jansen & William Foster & Gustavo Anríquez & Jorge Ortega, 2021. "Understanding Farm-Level Incentives within the Bioeconomy Framework: Prices, Product Quality, Losses, and Bio-Based Alternatives," Sustainability, MDPI, vol. 13(2), pages 1-21, January.
    5. Argueyrolles, Robin & Delzeit, Ruth, 2022. "The interconnections between Fossil Fuel Subsidy Reforms and biofuels," Conference papers 333492, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    6. Aruga, Kentaka, 2011. "非遺伝子組換え大豆とエネルギーの価格関係について [Relationships among the Non-Genetically Modified Soybean and Energy Prices]," MPRA Paper 38186, University Library of Munich, Germany, revised 20 Aug 2011.
    7. Ribeiro, Lauro André & Silva, Patrícia Pereira da, 2013. "Surveying techno-economic indicators of microalgae biofuel technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 89-96.
    8. Gal Hochman & Chrysostomos Tabakis, 2020. "Biofuels and Their Potential in South Korea," Sustainability, MDPI, vol. 12(17), pages 1-17, September.
    9. Mohlin, Kristina & Camuzeaux, Jonathan R. & Muller, Adrian & Schneider, Marius & Wagner, Gernot, 2018. "Factoring in the forgotten role of renewables in CO2 emission trends using decomposition analysis," Energy Policy, Elsevier, vol. 116(C), pages 290-296.
    10. Khoo, Hsien H., 2015. "Review of bio-conversion pathways of lignocellulose-to-ethanol: Sustainability assessment based on land footprint projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 100-119.
    11. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    12. Fung, Timothy K.F. & Choi, Doo Hun & Scheufele, Dietram A. & Shaw, Bret R., 2014. "Public opinion about biofuels: The interplay between party identification and risk/benefit perception," Energy Policy, Elsevier, vol. 73(C), pages 344-355.
    13. Stefan Mann, 2016. "Governing complementary responsibility goods through hybrid systems in a globalizing world," Journal of Socio-Economics in Agriculture (Until 2015: Yearbook of Socioeconomics in Agriculture), Swiss Society for Agricultural Economics and Rural Sociology, vol. 9(1), pages 14-21.
    14. Winden, Matthew & Cruze, Nathan & Haab, Tim & Bakshi, Bhavik, 2015. "Monetized value of the environmental, health and resource externalities of soy biodiesel," Energy Economics, Elsevier, vol. 47(C), pages 18-24.
    15. Stephen P. Holland & Jonathan E. Hughes & Christopher R. Knittel & Nathan C. Parker, 2013. "Unintended Consequences of Transportation Carbon Policies: Land-Use, Emissions, and Innovation," NBER Working Papers 19636, National Bureau of Economic Research, Inc.
    16. Reijnders, L., 2009. "Are forestation, bio-char and landfilled biomass adequate offsets for the climate effects of burning fossil fuels?," Energy Policy, Elsevier, vol. 37(8), pages 2839-2841, August.
    17. Yuqing An & Jin Yeu Tsou & Kapo Wong & Yuanzhi Zhang & Dawei Liu & Yu Li, 2018. "Detecting Land Use Changes in a Rapidly Developing City during 1990–2017 Using Satellite Imagery: A Case Study in Hangzhou Urban Area, China," Sustainability, MDPI, vol. 10(9), pages 1-14, September.
    18. Abdul-Manan, Amir F.N., 2017. "Lifecycle GHG emissions of palm biodiesel: Unintended market effects negate direct benefits of the Malaysian Economic Transformation Plan (ETP)," Energy Policy, Elsevier, vol. 104(C), pages 56-65.
    19. Kanlaya J. Barr & Bruce A. Babcock & Miguel A. Carriquiry & Andre M. Nassar & Leila Harfuch, 2011. "Agricultural Land Elasticities in the United States and Brazil," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 33(3), pages 449-462.
    20. Julia Tomei & Stella Semino & Helena Paul & Lilian Joensen & Mario Monti & Erling Jelsøe, 2010. "Soy production and certification: the case of Argentinean soy-based biodiesel," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(4), pages 371-394, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envira:v:46:y:2014:i:2:p:318-336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.