IDEAS home Printed from https://ideas.repec.org/a/sae/envira/v17y1985i5p625-645.html
   My bibliography  Save this article

Spatial Structure, Spatial Interaction, and Their Integration: A Review of Alternative Models

Author

Listed:
  • R J Bennett

    (Department of Geography, University of Cambridge, Cambridge CB2 3EN, England)

  • R P Haining

    (Department of Geography, University of Sheffield, Sheffield S10 2TN, England)

  • A G Wilson

    (School of Geography, University of Leeds, Leeds LS2 9JT, England)

Abstract

Models of spatial structure, spatial interaction, and integrated location-interaction models are reviewed and the nature of their contribution to the geographer's understanding of patterns and change is explored. The main discussion focuses first on spatial structure and then on spatial interaction. Integrated models are explored in relation to six categories employed by Zeeman, the first of these being concerned with pattern, the rest with increasingly complicated aspects of dynamics. The categories are: equilibrium, ‘fast’ dynamics, ‘slow’ dynamics, feedbacks, noise, and diffusion. The argument is illustrated by examples at each stage.

Suggested Citation

  • R J Bennett & R P Haining & A G Wilson, 1985. "Spatial Structure, Spatial Interaction, and Their Integration: A Review of Alternative Models," Environment and Planning A, , vol. 17(5), pages 625-645, May.
  • Handle: RePEc:sae:envira:v:17:y:1985:i:5:p:625-645
    DOI: 10.1068/a170625
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1068/a170625
    Download Restriction: no

    File URL: https://libkey.io/10.1068/a170625?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. R. H. Shumway & D. S. Stoffer, 1982. "An Approach To Time Series Smoothing And Forecasting Using The Em Algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 3(4), pages 253-264, July.
    2. Bennett, R J, 1977. "Consistent Estimation of Nonstationary Parameters for Small Sample Situations-A Monte Carlo Study," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 489-502, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Gray, 2005. "An examination of regional interaction and super-regions in Britain: An error correction model approach," Regional Studies, Taylor & Francis Journals, vol. 39(5), pages 619-632.
    2. Y Ishikawa, 1987. "An Empirical Study of the Competing Destinations Model Using Japanese Interaction Data," Environment and Planning A, , vol. 19(10), pages 1359-1373, October.
    3. P Plummer & R Haining & E Sheppard, 1998. "Spatial Pricing in Interdependent Markets: Testing Assumptions and Modeling Price Variation. A Case Study of Gasoline Retailing in St Cloud, Minnesota," Environment and Planning A, , vol. 30(1), pages 67-84, January.
    4. P B Slater, 1989. "A Field Theory of Spatial Interaction," Environment and Planning A, , vol. 21(1), pages 121-126, January.
    5. Katherine Curtis & Elizabeth Fussell & Jack DeWaard, 2015. "Recovery Migration After Hurricanes Katrina and Rita: Spatial Concentration and Intensification in the Migration System," Demography, Springer;Population Association of America (PAA), vol. 52(4), pages 1269-1293, August.
    6. S Brown, 1992. "The Wheel of Retail Gravitation?," Environment and Planning A, , vol. 24(10), pages 1409-1429, October.
    7. P Plummer, 1996. "Competitive Dynamics in Hierarchically Organized Markets: Spatial Duopoly and Demand Asymmetries," Environment and Planning A, , vol. 28(11), pages 2021-2040, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mazzocchi, Mario, 2006. "Time patterns in UK demand for alcohol and tobacco: an application of the EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2191-2205, May.
    2. Tobias Hartl & Roland Jucknewitz, 2022. "Approximate state space modelling of unobserved fractional components," Econometric Reviews, Taylor & Francis Journals, vol. 41(1), pages 75-98, January.
    3. David de Antonio Liedo, 2014. "Nowcasting Belgium," Working Paper Research 256, National Bank of Belgium.
    4. Proietti, Tommaso, 2008. "Estimation of Common Factors under Cross-Sectional and Temporal Aggregation Constraints: Nowcasting Monthly GDP and its Main Components," MPRA Paper 6860, University Library of Munich, Germany.
    5. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
    6. Alexander Tsyplakov, 2011. "An introduction to state space modeling (in Russian)," Quantile, Quantile, issue 9, pages 1-24, July.
    7. Hindrayanto, Irma & Koopman, Siem Jan & de Winter, Jasper, 2016. "Forecasting and nowcasting economic growth in the euro area using factor models," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1284-1305.
    8. Fulvio Corsi & Stefano Peluso & Francesco Audrino, 2015. "Missing in Asynchronicity: A Kalman‐em Approach for Multivariate Realized Covariance Estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(3), pages 377-397, April.
    9. Lara Fontanella & Luigi Ippoliti, 2003. "Dynamic models for space-time prediction via Karhunen-Loève expansion," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 12(1), pages 61-78, February.
    10. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    11. Tommaso Proietti & Alessandra Luati, 2013. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 15, pages 334-362, Edward Elgar Publishing.
    12. Pawel Krolikowski & Kurt Graden Lunsford & Meifeng dup Yang, 2019. "Using Advance Layoff Notices as a Labor Market Indicator," Economic Commentary, Federal Reserve Bank of Cleveland, vol. 2019(21), December.
    13. Korobilis, Dimitris & Koop, Gary, 2018. "Variational Bayes inference in high-dimensional time-varying parameter models," Essex Finance Centre Working Papers 22665, University of Essex, Essex Business School.
    14. Yasutomo Murasawa & Roberto S. Mariano, 2004. "Constructing a Coincident Index of Business Cycles Without Assuming a One-Factor Model," Econometric Society 2004 Far Eastern Meetings 710, Econometric Society.
    15. Zhou, Xinquan & Bagnarosa, Guillaume & Gohin, Alexandre & Pennings, Joost M.E. & Debie, Philippe, 2023. "Microstructure and high-frequency price discovery in the soybean complex," Journal of Commodity Markets, Elsevier, vol. 30(C).
    16. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    17. Seiler, Christian & Heumann, Christian, 2013. "Microdata imputations and macrodata implications: Evidence from the Ifo Business Survey," Economic Modelling, Elsevier, vol. 35(C), pages 722-733.
    18. Fiorentini, Gabriele & Galesi, Alessandro & Sentana, Enrique, 2018. "A spectral EM algorithm for dynamic factor models," Journal of Econometrics, Elsevier, vol. 205(1), pages 249-279.
    19. Hideaki Shimazaki & Shun-ichi Amari & Emery N Brown & Sonja Grün, 2012. "State-Space Analysis of Time-Varying Higher-Order Spike Correlation for Multiple Neural Spike Train Data," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-27, March.
    20. Grassi, Stefano & Proietti, Tommaso & Frale, Cecilia & Marcellino, Massimiliano & Mazzi, Gianluigi, 2015. "EuroMInd-C: A disaggregate monthly indicator of economic activity for the Euro area and member countries," International Journal of Forecasting, Elsevier, vol. 31(3), pages 712-738.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envira:v:17:y:1985:i:5:p:625-645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.