IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v35y2024i3p1270-1287.html
   My bibliography  Save this article

What determines household cooking fuel preferences? Empirical evidence from South Korea

Author

Listed:
  • Chan Hee Lee
  • Jong Ho Hong
  • Sung Hoon Kang

Abstract

This study examines the determinants of modern cooking fuel choices in Korea. The ordered probit model is estimated using an extensive online survey of Korean household energy consumers. Our empirical results showed that age, gender, and education are significant determinants of modern cooking fuel choices among the socioeconomic demographic variables: females, older people, and highly educated people are more likely to prefer electricity. Also, electricity is more likely to be preferred over natural gas by people who have a higher preference for district heating. Two psychological factors significantly influence cooking fuel choices. People whose behaviors are environment-friendly and people who are more health-conscious are more likely to prefer electricity over natural gas or propane. There are three important insights into the cooking fuel transition toward electricity. First, as interest in health and climate change has significantly increased in recent years in Korea, it may stimulate the transition from natural gas or propane to electricity. Second, electrification of cooking methods will be beneficial for the environment if electricity generation becomes less carbon-intensive. Since electricity in Korea is mainly generated by fossil fuels, it is crucial to implement more aggressive policies toward renewable sources in the energy mix for electricity generation. Third, the public should better understand why this problem cannot be overlooked because the energy mix is important in mitigating climate change. The better the people understand the exact relationship between energy consumption and pollutant emissions, the more effective and environmentally sound will the energy mix policy become.

Suggested Citation

  • Chan Hee Lee & Jong Ho Hong & Sung Hoon Kang, 2024. "What determines household cooking fuel preferences? Empirical evidence from South Korea," Energy & Environment, , vol. 35(3), pages 1270-1287, May.
  • Handle: RePEc:sae:engenv:v:35:y:2024:i:3:p:1270-1287
    DOI: 10.1177/0958305X221139925
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X221139925
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X221139925?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hosier, Richard H. & Dowd, Jeffrey, 1987. "Household fuel choice in Zimbabwe : An empirical test of the energy ladder hypothesis," Resources and Energy, Elsevier, vol. 9(4), pages 347-361, December.
    2. Hyunji Im & Yunsoung Kim, 2020. "The Electrification of Cooking Methods in Korea—Impact on Energy Use and Greenhouse Gas Emissions," Energies, MDPI, vol. 13(3), pages 1-9, February.
    3. Alan Manne & Richard Richels, 1992. "Buying Greenhouse Insurance: The Economic Costs of CO2 Emission Limits," MIT Press Books, The MIT Press, edition 1, volume 1, number 026213280x, April.
    4. Farsi, Mehdi & Filippini, Massimo & Pachauri, Shonali, 2007. "Fuel choices in urban Indian households," Environment and Development Economics, Cambridge University Press, vol. 12(6), pages 757-774, December.
    5. Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2016. "Are There Environmental Benefits from Driving Electric Vehicles? The Importance of Local Factors," American Economic Review, American Economic Association, vol. 106(12), pages 3700-3729, December.
    6. Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 212, pages 1611-1626.
    7. Rasmus Heltberg & Thomas Channing Arndt & Nagothu Udaya Sekhar, 2000. "Fuelwood Consumption and Forest Degradation: A Household Model for Domestic Energy Substitution in Rural India," Land Economics, University of Wisconsin Press, vol. 76(2), pages 213-232.
    8. Masera, Omar R. & Saatkamp, Barbara D. & Kammen, Daniel M., 2000. "From Linear Fuel Switching to Multiple Cooking Strategies: A Critique and Alternative to the Energy Ladder Model," World Development, Elsevier, vol. 28(12), pages 2083-2103, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jack Gregory & David I. Stern, 2012. "Fuel Choices in Rural Maharashtra," CCEP Working Papers 1207, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    2. Muller, Christophe & Yan, Huijie, 2018. "Household fuel use in developing countries: Review of theory and evidence," Energy Economics, Elsevier, vol. 70(C), pages 429-439.
    3. Adusah-Poku, Frank & Takeuchi, Kenji, 2019. "Household energy expenditure in Ghana: A double-hurdle model approach," World Development, Elsevier, vol. 117(C), pages 266-277.
    4. Rahut, Dil Bahadur & Das, Sukanya & De Groote, Hugo & Behera, Bhagirath, 2014. "Determinants of household energy use in Bhutan," Energy, Elsevier, vol. 69(C), pages 661-672.
    5. Kowsari, Reza & Zerriffi, Hisham, 2011. "Three dimensional energy profile:," Energy Policy, Elsevier, vol. 39(12), pages 7505-7517.
    6. Lee, Soo Min & Kim, Yeon-Su & Jaung, Wanggi & Latifah, Sitti & Afifi, Mansur & Fisher, Larry A., 2015. "Forests, fuelwood and livelihoods—energy transition patterns in eastern Indonesia," Energy Policy, Elsevier, vol. 85(C), pages 61-70.
    7. Couture, Stéphane & Garcia, Serge & Reynaud, Arnaud, 2012. "Household energy choices and fuelwood consumption: An econometric approach using French data," Energy Economics, Elsevier, vol. 34(6), pages 1972-1981.
    8. Weiqiang Zhu & Yun Zhang, 2024. "Household Energy Clean Transition Mechanisms under Market Failures: A Government Financing Perspective," Sustainability, MDPI, vol. 16(13), pages 1-29, July.
    9. van der Kroon, Bianca & Brouwer, Roy & van Beukering, Pieter J.H., 2013. "The energy ladder: Theoretical myth or empirical truth? Results from a meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 504-513.
    10. Stéphane Couture & Serge Garcia & Arnaud Reynaud, 2009. "Household Energy Choices and Fuelwood Consumption: An Econometric Approach to the French Data," LERNA Working Papers 09.08.284, LERNA, University of Toulouse.
    11. van der Kroon, Bianca & Brouwer, Roy & van Beukering, Pieter J.H., 2014. "The impact of the household decision environment on fuel choice behavior," Energy Economics, Elsevier, vol. 44(C), pages 236-247.
    12. Christophe Muller & Huijie Yan, 2018. "Household Fuel Use in Rural China," AMSE Working Papers 1808, Aix-Marseille School of Economics, France.
    13. Rui Xing & Tatsuya Hanaoka & Yuko Kanamori & Toshihiko Masui, 2017. "Greenhouse Gas and Air Pollutant Emissions of China’s Residential Sector: The Importance of Considering Energy Transition," Sustainability, MDPI, vol. 9(4), pages 1-17, April.
    14. Zi, Cao & Qian, Meng & Baozhong, Gao, 2021. "The consumption patterns and determining factors of rural household energy: A case study of Henan Province in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    15. Oyeniran, Ishola Wasiu & Isola, Wakeel Atanda, 2023. "Patterns and determinants of household cooking fuel choice in Nigeria," Energy, Elsevier, vol. 278(PA).
    16. van Ruijven, Bas J. & van Vuuren, Detlef P. & de Vries, Bert J.M. & Isaac, Morna & van der Sluijs, Jeroen P. & Lucas, Paul L. & Balachandra, P., 2011. "Model projections for household energy use in India," Energy Policy, Elsevier, vol. 39(12), pages 7747-7761.
    17. Gebreegziabher, Zenebe & Mekonnen, Alemu & Kassie, Menale & Köhlin, Gunnar, 2012. "Urban energy transition and technology adoption: The case of Tigrai, northern Ethiopia," Energy Economics, Elsevier, vol. 34(2), pages 410-418.
    18. Ngui, Dianah & Mutua, John & Osiolo, Hellen & Aligula, Eric, 2011. "Household energy demand in Kenya: An application of the linear approximate almost ideal demand system (LA-AIDS)," Energy Policy, Elsevier, vol. 39(11), pages 7084-7094.
    19. Rahut, Dil Bahadur & Behera, Bhagirath & Ali, Akhter, 2017. "Factors determining household use of clean and renewable energy sources for lighting in Sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 661-672.
    20. Han, Hongyun & Wu, Shu, 2018. "Rural residential energy transition and energy consumption intensity in China," Energy Economics, Elsevier, vol. 74(C), pages 523-534.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:35:y:2024:i:3:p:1270-1287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.