IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v35y2024i2p597-609.html
   My bibliography  Save this article

Hydrocarbon regulation and lower temperature pyrolysis of balikun oil shale kerogen

Author

Listed:
  • Fei Liu
  • Weiguang Shi
  • Tianbao Liu
  • Wei Li
  • Liang Sun
  • Xiangbin Liu
  • Changming Zhao
  • Benxian Li
  • Sunhua Deng
  • Zhaohui Dong
  • Chengwu Xu
  • Xiaofei Fu
  • Xiuling Yan

Abstract

Oil shale kerogen is a kind of composite nature of fossil energy polymer. Kerogen pyrolysis is a feasible and alternative strategy to produce fossil fuels from shales. However, the disadvantages including the high energy consumption, the high cost, and the low hydrocarbon conversion, significantly hinder the development and utilization of unconventional hydrocarbon resources. Herein, the hexagonal crystal structural layered double hydroxides (LDHs) with the Ni/Fe ratio of 5.64:2.36 is proposed as pyrolysis catalyst to improve the catalytic efficiency, the selectivity of target hydrocarbons, and lower the temperature for the process of kerogen pyrolysis. As a result, needle-like nanoscale NiFe-LDHs are prepared successfully to perform the fast thermal upgrading of Balikun oil shale kerogen. The catalytic pyrolysis performance has been observed that the temperature for maximum conversion (Tmax) is 401.18 °C, presenting a Tmax reduction of 37.84 °C, the yield of shale oil is increased by 7.83 wt%. And during 350°C– 400°C, a progressive increment of 147.67%, 230.86%, and 310.61% is obtained corresponding to the content of C 1 -C 5 , C 6 -C 14 , and C 14   +  hydrocarbons, respectively. This finding enriches the catalyst candidates for kerogen pyrolysis and provides new insights into industrial applications of in-situ pyrolysis technology for oil shale recovery processes.

Suggested Citation

  • Fei Liu & Weiguang Shi & Tianbao Liu & Wei Li & Liang Sun & Xiangbin Liu & Changming Zhao & Benxian Li & Sunhua Deng & Zhaohui Dong & Chengwu Xu & Xiaofei Fu & Xiuling Yan, 2024. "Hydrocarbon regulation and lower temperature pyrolysis of balikun oil shale kerogen," Energy & Environment, , vol. 35(2), pages 597-609, March.
  • Handle: RePEc:sae:engenv:v:35:y:2024:i:2:p:597-609
    DOI: 10.1177/0958305X221133263
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X221133263
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X221133263?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kang, Zhiqin & Zhao, Yangsheng & Yang, Dong, 2020. "Review of oil shale in-situ conversion technology," Applied Energy, Elsevier, vol. 269(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dazhong Ren & Zhendong Wang & Fu Yang & Hao Zeng & Chenyuan Lü & Han Wang & Senhao Wang & Shaotao Xu, 2024. "Study on the Applicability of Autothermic Pyrolysis In Situ Conversion Process for Low-Grade Oil Shale: A Case Study of Tongchuan, Ordos Basin, China," Energies, MDPI, vol. 17(13), pages 1-21, June.
    2. Wang, Lei & Yang, Dong & Zhang, Yuxing & Li, Wenqing & Kang, Zhiqin & Zhao, Yangsheng, 2022. "Research on the reaction mechanism and modification distance of oil shale during high-temperature water vapor pyrolysis," Energy, Elsevier, vol. 261(PB).
    3. Pan, Bin & Yin, Xia & Yang, Zhengru & Ghanizadeh, Amin & Debuhr, Chris & Clarkson, Christopher R. & Gou, Feifei & Zhu, Weiyao & Ju, Yang & Iglauer, Stefan, 2024. "Real-time imaging of oil shale pyrolysis dynamics at nanoscale via environmental scanning electron microscopy," Applied Energy, Elsevier, vol. 363(C).
    4. Niu, Daming & Sun, Pingchang & Ma, Lin & Zhao, Kang'an & Ding, Cong, 2023. "Porosity evolution of Minhe oil shale under an open rapid heating system and the carbon storage potentials," Renewable Energy, Elsevier, vol. 205(C), pages 783-799.
    5. Youhong Sun & Shichang Liu & Qiang Li & Xiaoshu Lü, 2022. "Experimental Study on the Factors of the Oil Shale Thermal Breakdown in High-Voltage Power Frequency Electric Heating Technology," Energies, MDPI, vol. 15(19), pages 1-12, September.
    6. Lianhua Hou & Zhongying Zhao & Xia Luo & Jingkui Mi & Zhenglian Pang & Lijun Zhang & Senhu Lin, 2024. "Evaluation of Recoverable Hydrocarbon Reserves and Area Selection Methods for In Situ Conversion of Shale," Energies, MDPI, vol. 17(11), pages 1-24, June.
    7. Wang, Guoying & Liu, Shaowei & Yang, Dong & Fu, Mengxiong, 2022. "Numerical study on the in-situ pyrolysis process of steeply dipping oil shale deposits by injecting superheated water steam: A case study on Jimsar oil shale in Xinjiang, China," Energy, Elsevier, vol. 239(PC).
    8. Shi, Yu & Zhang, Yulong & Song, Xianzhi & Cui, Qiliang & Lei, Zhihong & Song, Guofeng, 2023. "Injection energy utilization efficiency and production performance of oil shale in-situ exploitation," Energy, Elsevier, vol. 263(PB).
    9. Huang, Xianfu & Zhao, Ya-Pu, 2023. "Evolution of pore structure and adsorption-desorption in oil shale formation rocks after compression," Energy, Elsevier, vol. 278(PA).
    10. Zhou, Guangzhao & Guo, Zanquan & Sun, Simin & Jin, Qingsheng, 2023. "A CNN-BiGRU-AM neural network for AI applications in shale oil production prediction," Applied Energy, Elsevier, vol. 344(C).
    11. Chunsheng Yu & Xiao Zhao & Qi Jiang & Xiaosha Lin & Hengyuan Gong & Xuanqing Chen, 2022. "Shale Microstructure Characteristics under the Action of Supercritical Carbon Dioxide (Sc-CO 2 )," Energies, MDPI, vol. 15(22), pages 1-9, November.
    12. Hao Wang & Xiaogang Li & Jingyi Zhu & Zhaozhong Yang & Jie Zhou & Liangping Yi, 2022. "Numerical Simulation of Oil Shale Pyrolysis under Microwave Irradiation Based on a Three-Dimensional Porous Medium Multiphysics Field Model," Energies, MDPI, vol. 15(9), pages 1-20, April.
    13. Hou, Hongjuan & Du, Qiongjie & Huang, Chang & Zhang, Le & Hu, Eric, 2021. "An oil shale recovery system powered by solar thermal energy," Energy, Elsevier, vol. 225(C).
    14. Lu, Xunfa & He, Pengchao & Zhang, Zhengjun & Apergis, Nicholas & Roubaud, David, 2024. "Extreme co-movements between decomposed oil price shocks and sustainable investments," Energy Economics, Elsevier, vol. 134(C).
    15. Chen, Bin & Li, Yanlin & Yuan, Mengxue & Shen, Jun & Wang, Sha & Tong, Jianhui & Guo, Yun, 2022. "Study of the Co-pyrolysis characteristics of oil shale with wheat straw based on the hierarchical collection," Energy, Elsevier, vol. 239(PB).
    16. Wei, Jianguang & Yang, Erlong & Li, Jiangtao & Liang, Shuang & Zhou, Xiaofeng, 2023. "Nuclear magnetic resonance study on the evolution of oil water distribution in multistage pore networks of shale oil reservoirs," Energy, Elsevier, vol. 282(C).
    17. Huang, HanWei & Yu, Hao & Xu, WenLong & Lyu, ChengSi & Micheal, Marembo & Xu, HengYu & Liu, He & Wu, HengAn, 2023. "A coupled thermo-hydro-mechanical-chemical model for production performance of oil shale reservoirs during in-situ conversion process," Energy, Elsevier, vol. 268(C).
    18. Zhang, Hewei & Shen, Jian & Wang, Geoff & Li, Kexin & Fang, Xiaojie, 2023. "Experimental study on the effect of high-temperature nitrogen immersion on the nanoscale pore structure of different lithotypes of coal," Energy, Elsevier, vol. 284(C).
    19. Xudong Huang & Dong Yang & Zhiqin Kang, 2020. "Study on the Pore and Fracture Connectivity Characteristics of Oil Shale Pyrolyzed by Superheated Steam," Energies, MDPI, vol. 13(21), pages 1-14, November.
    20. Cui, Ziang & Sun, Mengdi & Mohammadian, Erfan & Hu, Qinhong & Liu, Bo & Ostadhassan, Mehdi & Yang, Wuxing & Ke, Yubin & Mu, Jingfu & Ren, Zijie & Pan, Zhejun, 2024. "Characterizing microstructural evolutions in low-mature lacustrine shale: A comparative experimental study of conventional heat, microwave, and water-saturated microwave stimulations," Energy, Elsevier, vol. 294(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:35:y:2024:i:2:p:597-609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.