IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i3p621-d1579589.html
   My bibliography  Save this article

Analysis of Kazakhstan Oil Shale Deposits in Accordance with Resource Estimation Practices for Consideration of Potential Shale Oil Reserves

Author

Listed:
  • Sergei Sabanov

    (School of Mining and Geosciences, Nazarbayev University, Astana 010000, Kazakhstan)

  • Alar Konist

    (Department of Energy Technology, Tallinn University of Technology, Energy and Fuels, 19086 Tallinn, Estonia)

  • Ruslana Korshunova

    (School of Mining and Geosciences, Nazarbayev University, Astana 010000, Kazakhstan)

Abstract

Most oil shale deposits in Kazakhstan were estimated without detailed calculations of the grade and tonnages and included low confidence categories, i.e., Inferred, Off-Balance, and Non-Economic oil shales, on which cannot be given any oil reserves. An analysis of Kazakhstan oil shale deposits in accordance with resource estimation practices for consideration of potential shale oil tonnages has been produced. The developed methodology considers extraction and processing recoveries of conventional and unconventional mining methods. The methodology uses Monte Carlo modeling to estimate a range of oil content and oil recoveries and uses the event tree analysis to demonstrate how the initial oil shale material tonnages and grades go through various fault and success branches, considering probabilities distributions and estimating potential shale oil tones at the end. As a result, this estimation methodology has been validated by high-ranked resource category oil shale deposits, which demonstrated the range of potential shale oil in the range of 10.7–16.8 Mt at the 50% confidence level. The results will be used for further consideration in financial-economic feasibility studies, which must take into account operational and capital expenses, product sale prices and market, and social-environmental aspects.

Suggested Citation

  • Sergei Sabanov & Alar Konist & Ruslana Korshunova, 2025. "Analysis of Kazakhstan Oil Shale Deposits in Accordance with Resource Estimation Practices for Consideration of Potential Shale Oil Reserves," Energies, MDPI, vol. 18(3), pages 1-18, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:621-:d:1579589
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/3/621/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/3/621/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kang, Zhiqin & Zhao, Yangsheng & Yang, Dong, 2020. "Review of oil shale in-situ conversion technology," Applied Energy, Elsevier, vol. 269(C).
    2. Speirs, Jamie & McGlade, Christophe & Slade, Raphael, 2015. "Uncertainty in the availability of natural resources: Fossil fuels, critical metals and biomass," Energy Policy, Elsevier, vol. 87(C), pages 654-664.
    3. Sergei Sabanov & Abdullah Rasheed Qureshi & Zhaudir Dauitbay & Gulim Kurmangazy, 2023. "A Method for the Modified Estimation of Oil Shale Mineable Reserves for Shale Oil Projects: A Case Study," Energies, MDPI, vol. 16(16), pages 1-17, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergei Sabanov & Abdullah Rasheed Qureshi & Zhaudir Dauitbay & Gulim Kurmangazy, 2023. "A Method for the Modified Estimation of Oil Shale Mineable Reserves for Shale Oil Projects: A Case Study," Energies, MDPI, vol. 16(16), pages 1-17, August.
    2. Dazhong Ren & Zhendong Wang & Fu Yang & Hao Zeng & Chenyuan Lü & Han Wang & Senhao Wang & Shaotao Xu, 2024. "Study on the Applicability of Autothermic Pyrolysis In Situ Conversion Process for Low-Grade Oil Shale: A Case Study of Tongchuan, Ordos Basin, China," Energies, MDPI, vol. 17(13), pages 1-21, June.
    3. Dahl, Roy Endré & Lorentzen, Sindre & Oglend, Atle & Osmundsen, Petter, 2017. "Pro-cyclical petroleum investments and cost overruns in Norway," Energy Policy, Elsevier, vol. 100(C), pages 68-78.
    4. Veronika Varvařovská & Michaela Staňková, 2021. "Does the Involvement of "Green Energy" Increase the Productivity of Companies in the Production of the Electricity Sector?," European Journal of Business Science and Technology, Mendel University in Brno, Faculty of Business and Economics, vol. 7(2), pages 152-164.
    5. Zhang, Shuo & Song, Shengyuan & Zhang, Wen & Zhao, Jinmin & Cao, Dongfang & Ma, Wenliang & Chen, Zijian & Hu, Ying, 2023. "Research on the inherent mechanism of rock mass deformation of oil shale in-situ mining under the condition of thermal-fluid-solid coupling," Energy, Elsevier, vol. 280(C).
    6. Arcigni, Francesco & Friso, Riccardo & Collu, Maurizio & Venturini, Mauro, 2019. "Harmonized and systematic assessment of microalgae energy potential for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 614-624.
    7. Lorenzo Pellegrini & Murat Arsel & Gorka Muñoa & Guillem Rius-Taberner & Carlos Mena & Martí Orta-Martínez, 2024. "The atlas of unburnable oil for supply-side climate policies," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Yiwei Wang & Yuan Wang & Sunhua Deng & Qiang Li & Jingjing Gu & Haoche Shui & Wei Guo, 2022. "Numerical Simulation Analysis of Heating Effect of Downhole Methane Catalytic Combustion Heater under High Pressure," Energies, MDPI, vol. 15(3), pages 1-23, February.
    9. Zhang, Bowei & Zhao, Xiao & Zhang, Jie & Wang, Junying & Jin, Hui, 2023. "An investigation of the density of nano-confined subcritical/supercritical water," Energy, Elsevier, vol. 284(C).
    10. Wang, Lei & Yang, Dong & Zhang, Yuxing & Li, Wenqing & Kang, Zhiqin & Zhao, Yangsheng, 2022. "Research on the reaction mechanism and modification distance of oil shale during high-temperature water vapor pyrolysis," Energy, Elsevier, vol. 261(PB).
    11. Pan, Bin & Yin, Xia & Yang, Zhengru & Ghanizadeh, Amin & Debuhr, Chris & Clarkson, Christopher R. & Gou, Feifei & Zhu, Weiyao & Ju, Yang & Iglauer, Stefan, 2024. "Real-time imaging of oil shale pyrolysis dynamics at nanoscale via environmental scanning electron microscopy," Applied Energy, Elsevier, vol. 363(C).
    12. Kang, Zhiqin & Jiang, Xing & Wang, Lei & Yang, Dong & Ma, Yulin & Zhao, Yangsheng, 2023. "Comparative investigation of in situ hydraulic fracturing and high-temperature steam fracturing tests for meter-scale oil shale," Energy, Elsevier, vol. 281(C).
    13. Martino, Gaetano & Polinori, Paolo & Bufacchi, Marina & Rossetti, Enrica, 2020. "The biomass potential availability from olive cropping in Italy in a business perspective: Methodological approach and tentative estimates," Renewable Energy, Elsevier, vol. 156(C), pages 526-534.
    14. Niu, Daming & Sun, Pingchang & Ma, Lin & Zhao, Kang'an & Ding, Cong, 2023. "Porosity evolution of Minhe oil shale under an open rapid heating system and the carbon storage potentials," Renewable Energy, Elsevier, vol. 205(C), pages 783-799.
    15. Lihong Yang & Zhao Liu & Hao Zeng & Jianzheng Su & Yiwei Wang & Xudong Chen & Wei Guo, 2021. "Influence of Gas Flooding Pressure on Groundwater Flow during Oil Shale In Situ Exploitation," Energies, MDPI, vol. 14(24), pages 1-12, December.
    16. Youhong Sun & Shichang Liu & Qiang Li & Xiaoshu Lü, 2022. "Experimental Study on the Factors of the Oil Shale Thermal Breakdown in High-Voltage Power Frequency Electric Heating Technology," Energies, MDPI, vol. 15(19), pages 1-12, September.
    17. Flavio Andreoli Bonazzi & Sirio R.S. Cividino & Ilaria Zambon & Enrico Maria Mosconi & Stefano Poponi, 2018. "Building Energy Opportunity with a Supply Chain Based on the Local Fuel-Producing Capacity," Sustainability, MDPI, vol. 10(7), pages 1-15, June.
    18. Joaquin Vespignani & Russell Smyth, 2024. "Artificial intelligence investments reduce risks to critical mineral supply," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Lianhua Hou & Zhongying Zhao & Xia Luo & Jingkui Mi & Zhenglian Pang & Lijun Zhang & Senhu Lin, 2024. "Evaluation of Recoverable Hydrocarbon Reserves and Area Selection Methods for In Situ Conversion of Shale," Energies, MDPI, vol. 17(11), pages 1-24, June.
    20. Hafezali Iqbal Hussain & Muhammad Haseeb & Manuela Tvaronavičienė & Leonardus W. W. Mihardjo & Kittisak Jermsittiparsert, 2020. "The Causal Connection of Natural Resources and Globalization with Energy Consumption in Top Asian Countries: Evidence from a Nonparametric Causality-in-Quantile Approach," Energies, MDPI, vol. 13(9), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:621-:d:1579589. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.