IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v34y2023i3p533-559.html
   My bibliography  Save this article

Can the Financial Industry ‘Anchor’ Carbon Emission Reductions?— The Mediating and Moderating Effects of the Technology Market

Author

Listed:
  • Shuhong Wang
  • Xiaojing Yi

Abstract

Existing research is ambiguous about the relationship between the financial industry development scale and carbon emission reduction targets. Therefore, using data from 30 provinces and municipalities directly under the central government (excluding Tibet, Hong Kong, Macao, and Taiwan) from 2009–2018, this study divides the reduction targets into emission quantity and intensity to investigate this relationship. Using the improved STIRPAT equation, the pooled OLS and other estimation technique in robustness test, we found that the financial industry development scale is positively related to emission quantity and negatively related to emission intensity. The financial industry development scale inhibits carbon emission intensity through the mediating role of the technology market development degree, which also has a moderating effect on the scale. The study also discusses the regional differences in the scale's impact on carbon emission intensity, its compensation effect on the economic loss caused by carbon emissions, and the positive influence of policy implementation on carbon emission intensity. We provide suggestions to reduce carbon emissions and achieve carbon neutrality.

Suggested Citation

  • Shuhong Wang & Xiaojing Yi, 2023. "Can the Financial Industry ‘Anchor’ Carbon Emission Reductions?— The Mediating and Moderating Effects of the Technology Market," Energy & Environment, , vol. 34(3), pages 533-559, May.
  • Handle: RePEc:sae:engenv:v:34:y:2023:i:3:p:533-559
    DOI: 10.1177/0958305X211061810
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X211061810
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X211061810?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Maryniak, Paweł & Trück, Stefan & Weron, Rafał, 2019. "Carbon pricing and electricity markets — The case of the Australian Clean Energy Bill," Energy Economics, Elsevier, vol. 79(C), pages 45-58.
    2. Gu, Jianqiang & Gouliamos, Kostas & Lobonţ, Oana-Ramona & Nicoleta-Claudia, Moldovan, 2021. "Is the fourth industrial revolution transforming the relationship between financial development and its determinants in emerging economies?," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    3. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    4. Guo, Jian-Xin & Zhu, Lei & Fan, Ying, 2016. "Emission path planning based on dynamic abatement cost curve," European Journal of Operational Research, Elsevier, vol. 255(3), pages 996-1013.
    5. Song, Malin & Xie, Qianjiao & Wang, Shuhong & Zhou, Li, 2021. "Intensity of environmental regulation and environmentally biased technology in the employment market," Omega, Elsevier, vol. 100(C).
    6. Panagiotis Trivellas & Georgios Malindretos & Panagiotis Reklitis, 2020. "Implications of Green Logistics Management on Sustainable Business and Supply Chain Performance: Evidence from a Survey in the Greek Agri-Food Sector," Sustainability, MDPI, vol. 12(24), pages 1-29, December.
    7. Cao, Erbao & Du, Lingxia & Ruan, Junhu, 2019. "Financing preferences and performance for an emission-dependent supply chain: Supplier vs. bank," International Journal of Production Economics, Elsevier, vol. 208(C), pages 383-399.
    8. Ogbonna, Christiana N. & Nwoba, Emeka G., 2021. "Bio-based flocculants for sustainable harvesting of microalgae for biofuel production. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    9. He, Xingxing & Xiong, Deping & Khalifa, Wagdi M.S. & Li, Xin, 2021. "Chinese banking sector: A major stakeholder in bringing fourth industrial revolution in the country," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    10. Charfeddine, Lanouar & Kahia, Montassar, 2019. "Impact of renewable energy consumption and financial development on CO2 emissions and economic growth in the MENA region: A panel vector autoregressive (PVAR) analysis," Renewable Energy, Elsevier, vol. 139(C), pages 198-213.
    11. An, Simin & Li, Bo & Song, Dongping & Chen, Xue, 2021. "Green credit financing versus trade credit financing in a supply chain with carbon emission limits," European Journal of Operational Research, Elsevier, vol. 292(1), pages 125-142.
    12. Beck, Thorsten & Chen, Tao & Lin, Chen & Song, Frank M., 2016. "Financial innovation: The bright and the dark sides," Journal of Banking & Finance, Elsevier, vol. 72(C), pages 28-51.
    13. Ashfaq, Asad & Ianakiev, Anton, 2018. "Cost-minimised design of a highly renewable heating network for fossil-free future," Energy, Elsevier, vol. 152(C), pages 613-626.
    14. Hongshan Ai & Shenglan Hu & Ke Li & Shuai Shao, 2020. "Environmental regulation, total factor productivity, and enterprise duration: Evidence from China," Business Strategy and the Environment, Wiley Blackwell, vol. 29(6), pages 2284-2296, September.
    15. Die Hu & Lu Qiu & Maoyan She & Yu Wang, 2021. "Sustaining the sustainable development: How do firms turn government green subsidies into financial performance through green innovation?," Business Strategy and the Environment, Wiley Blackwell, vol. 30(5), pages 2271-2292, July.
    16. Gongbing Bi & Minyue Jin & Liuyi Ling & Feng Yang, 2017. "Environmental subsidy and the choice of green technology in the presence of green consumers," Annals of Operations Research, Springer, vol. 255(1), pages 547-568, August.
    17. Acheampong, Alex O., 2019. "Modelling for insight: Does financial development improve environmental quality?," Energy Economics, Elsevier, vol. 83(C), pages 156-179.
    18. Jiang, Minxing & Zhu, Bangzhu & Chevallier, Julien & Xie, Rui, 2018. "Allocating provincial CO2 quotas for the Chinese national carbon program," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(3), July.
    19. He, Weijun & Yang, Yi & Wang, Zhaohua & Zhu, Joe, 2018. "Estimation and allocation of cost savings from collaborative CO2 abatement in China," Energy Economics, Elsevier, vol. 72(C), pages 62-74.
    20. Claudia Nyarko Mensah & Lamini Dauda & Kofi Baah Boamah & Muhammad Salman, 2021. "One district one factory policy of Ghana, a transition to a low-carbon habitable economy?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 703-721, January.
    21. Albrizio, Silvia & Kozluk, Tomasz & Zipperer, Vera, 2017. "Environmental policies and productivity growth: Evidence across industries and firms," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 209-226.
    22. Chengcheng Zhang, 2021. "Factors Influencing the Allocation of Regional Sci-Tech Financial Resources Based on the Multiple Regression Model," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-9, February.
    23. Ahmad, Mahmood & Jiang, Ping & Majeed, Abdul & Umar, Muhammad & Khan, Zeeshan & Muhammad, Sulaman, 2020. "The dynamic impact of natural resources, technological innovations and economic growth on ecological footprint: An advanced panel data estimation," Resources Policy, Elsevier, vol. 69(C).
    24. Ahmad, Najid & Du, Liangsheng & Lu, Jiye & Wang, Jianlin & Li, Hong-Zhou & Hashmi, Muhammad Zaffar, 2017. "Modelling the CO2 emissions and economic growth in Croatia: Is there any environmental Kuznets curve?," Energy, Elsevier, vol. 123(C), pages 164-172.
    25. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    26. Hu, Yucai & Ren, Shenggang & Wang, Yangjie & Chen, Xiaohong, 2020. "Can carbon emission trading scheme achieve energy conservation and emission reduction? Evidence from the industrial sector in China," Energy Economics, Elsevier, vol. 85(C).
    27. Muhammad Farhan Bashir & Benjiang MA & Muhammad Shahbaz & Zhilun Jiao, 2020. "The nexus between environmental tax and carbon emissions with the roles of environmental technology and financial development," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-20, November.
    28. Jiangyue Joy Ying & Benjamin K. Sovacool, 2021. "A fair trade? Expert perceptions of equity, innovation, and public awareness in China’s future Emissions Trading Scheme," Climatic Change, Springer, vol. 164(3), pages 1-23, February.
    29. Liang Li & Hajar Msaad & Huaping Sun & Mei Xuen Tan & Yeqing Lu & Antonio K.W. Lau, 2020. "Green Innovation and Business Sustainability: New Evidence from Energy Intensive Industry in China," IJERPH, MDPI, vol. 17(21), pages 1-18, October.
    30. Vaccaro, Roberto & Rocco, Matteo V., 2021. "Quantifying the impact of low carbon transition scenarios at regional level through soft-linked energy and economy models: The case of South-Tyrol Province in Italy," Energy, Elsevier, vol. 220(C).
    31. Brown, T. & Schlachtberger, D. & Kies, A. & Schramm, S. & Greiner, M., 2018. "Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system," Energy, Elsevier, vol. 160(C), pages 720-739.
    32. Chen, Zhenling & Yuan, Xiao-Chen & Zhang, Xiaoling & Cao, Yunfei, 2020. "How will the Chinese national carbon emissions trading scheme work? The assessment of regional potential gains," Energy Policy, Elsevier, vol. 137(C).
    33. Kou, Mingting & Yang, Yuanqi & Chen, Kaihua, 2020. "The impact of external R&D financing on innovation process from a supply-demand perspective," Economic Modelling, Elsevier, vol. 92(C), pages 375-387.
    34. Yuan, Shengjun & Musibau, Hammed Oluwaseyi & Genç, Sema Yılmaz & Shaheen, Riffat & Ameen, Anam & Tan, Zhixiong, 2021. "Digitalization of economy is the key factor behind fourth industrial revolution: How G7 countries are overcoming with the financing issues?," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    35. Khan, A.M. & Liang, L. & Mia, M. & Gupta, M.K. & Wei, Z. & Jamil, M. & Ning, H., 2021. "Development of process performance simulator (PPS) and parametric optimization for sustainable machining considering carbon emission, cost and energy aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    36. Acheampong, Alex O., 2018. "Economic growth, CO2 emissions and energy consumption: What causes what and where?," Energy Economics, Elsevier, vol. 74(C), pages 677-692.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Xu, Yong & Li, Shanshan & Zhou, Xiaoxiao & Shahzad, Umer & Zhao, Xin, 2022. "How environmental regulations affect the development of green finance: Recent evidence from polluting firms in China," Renewable Energy, Elsevier, vol. 189(C), pages 917-926.
    3. Dervis Kirikkaleli & Hasan Güngör & Tomiwa Sunday Adebayo, 2022. "Consumption‐based carbon emissions, renewable energy consumption, financial development and economic growth in Chile," Business Strategy and the Environment, Wiley Blackwell, vol. 31(3), pages 1123-1137, March.
    4. Di Zhou & Xiaoyu Liang & Ye Zhou & Kai Tang, 2020. "Does Emission Trading Boost Carbon Productivity? Evidence from China’s Pilot Emission Trading Scheme," IJERPH, MDPI, vol. 17(15), pages 1-16, July.
    5. Adebayo, Tomiwa Sunday & Awosusi, Abraham Ayobamiji & Bekun, Festus Victor & Altuntaş, Mehmet, 2021. "Coal energy consumption beat renewable energy consumption in South Africa: Developing policy framework for sustainable development," Renewable Energy, Elsevier, vol. 175(C), pages 1012-1024.
    6. Armeanu, Daniel Stefan & Joldes, Camelia Catalina & Gherghina, Stefan Cristian & Andrei, Jean Vasile, 2021. "Understanding the multidimensional linkages among renewable energy, pollution, economic growth and urbanization in contemporary economies: Quantitative assessments across different income countries’ g," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    7. Acheampong, Alex O. & Dzator, Janet & Dzator, Michael & Salim, Ruhul, 2022. "Unveiling the effect of transport infrastructure and technological innovation on economic growth, energy consumption and CO2 emissions," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    8. Lin, Boqiang & Okoye, Jude O., 2023. "Towards renewable energy generation and low greenhouse gas emission in high-income countries: Performance of financial development and governance," Renewable Energy, Elsevier, vol. 215(C).
    9. Tomiwa Sunday Adebayo & Abraham Ayobamiji Awosusi & Seun Damola Oladipupo & Ephraim Bonah Agyekum & Arunkumar Jayakumar & Nallapaneni Manoj Kumar, 2021. "Dominance of Fossil Fuels in Japan’s National Energy Mix and Implications for Environmental Sustainability," IJERPH, MDPI, vol. 18(14), pages 1-20, July.
    10. Chiu-Ming Hsiao, 2022. "Economic Growth, CO 2 Emissions Quota and Optimal Allocation under Uncertainty," Sustainability, MDPI, vol. 14(14), pages 1-26, July.
    11. Acheampong, Alex O., 2019. "Modelling for insight: Does financial development improve environmental quality?," Energy Economics, Elsevier, vol. 83(C), pages 156-179.
    12. Łukasz Nazarko & Eigirdas Žemaitis & Łukasz Krzysztof Wróblewski & Karel Šuhajda & Magdalena Zajączkowska, 2022. "The Impact of Energy Development of the European Union Euro Area Countries on CO 2 Emissions Level," Energies, MDPI, vol. 15(4), pages 1-12, February.
    13. Chien, FengSheng & Zhang, YunQian & Lin, ZiQi & Lin, YuChao & Sadiq, Muhammad, 2024. "An integrated perspective on fintech, green innovation and natural resource rent: Evidence from Asia," Resources Policy, Elsevier, vol. 92(C).
    14. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    15. Wei, Shuxin & Wei, Wenshan & Umut, Alican, 2023. "Do renewable energy consumption, technological innovation, and international integration enhance environmental sustainability in Brazil?," Renewable Energy, Elsevier, vol. 202(C), pages 172-183.
    16. Chu, Baoju & Dong, Yizhe & Liu, Yaorong & Ma, Diandian & Wang, Tianju, 2024. "Does China's emission trading scheme affect corporate financial performance: Evidence from a quasi-natural experiment," Economic Modelling, Elsevier, vol. 132(C).
    17. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    18. He, Weijun & Wang, Bo & Danish, & Wang, Zhaohua, 2018. "Will regional economic integration influence carbon dioxide marginal abatement costs? Evidence from Chinese panel data," Energy Economics, Elsevier, vol. 74(C), pages 263-274.
    19. Chen, Zhenling & Yuan, Xiao-Chen & Zhang, Xiaoling & Cao, Yunfei, 2020. "How will the Chinese national carbon emissions trading scheme work? The assessment of regional potential gains," Energy Policy, Elsevier, vol. 137(C).
    20. Amir Iqbal & Xuan Tang & Samma Faiz Rasool, 2023. "Investigating the nexus between CO2 emissions, renewable energy consumption, FDI, exports and economic growth: evidence from BRICS countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2234-2263, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:34:y:2023:i:3:p:533-559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.