IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v23y2013icp80-90.html
   My bibliography  Save this article

Carbon pay back period for solar and wind energy project installed in India: A critical review

Author

Listed:
  • Marimuthu, C.
  • Kirubakaran, V.

Abstract

All renewable energy systems make some contribution to climate change. This is due to fuel combusted for their construction and as back up energy during their operation. Accurate calculation of greenhouse gas emission per kilowatt hour of electricity is difficult but is an important part of policy making and planning. This study, an attempt has been made to analyze and review the development and potential of wind and solar energy in India. LCA has been carried out for the on shore wind turbine and poly crystalline PV module. Based on the past studies, life cycle inventory data has been collected for the investigation. Using that data, the detailed investigation has been made for the existing grid connected 1.65MW wind turbine project in and around Udumalpet, Tamil Nadu and 25kW Roof top solar PV Power plant at Sewa Bhawan, New Delhi. Carbon intensity, energy pay back period and carbon pay back period for the above system have been calculated and compared with each other.

Suggested Citation

  • Marimuthu, C. & Kirubakaran, V., 2013. "Carbon pay back period for solar and wind energy project installed in India: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 80-90.
  • Handle: RePEc:eee:rensus:v:23:y:2013:i:c:p:80-90
    DOI: 10.1016/j.rser.2013.02.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032113001470
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2013.02.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hondo, Hiroki, 2005. "Life cycle GHG emission analysis of power generation systems: Japanese case," Energy, Elsevier, vol. 30(11), pages 2042-2056.
    2. Góralczyk, Malgorzata, 2003. "Life-cycle assessment in the renewable energy sector," Applied Energy, Elsevier, vol. 75(3-4), pages 205-211, July.
    3. Nishimura, A. & Hayashi, Y. & Tanaka, K. & Hirota, M. & Kato, S. & Ito, M. & Araki, K. & Hu, E.J., 2010. "Life cycle assessment and evaluation of energy payback time on high-concentration photovoltaic power generation system," Applied Energy, Elsevier, vol. 87(9), pages 2797-2807, September.
    4. Schleisner, L, 2000. "Life cycle assessment of a wind farm and related externalities," Renewable Energy, Elsevier, vol. 20(3), pages 279-288.
    5. Lenzen, Manfred & Wachsmann, Ulrike, 2004. "Wind turbines in Brazil and Germany: an example of geographical variability in life-cycle assessment," Applied Energy, Elsevier, vol. 77(2), pages 119-130, February.
    6. Lenzen, Manfred & Munksgaard, Jesper, 2002. "Energy and CO2 life-cycle analyses of wind turbines—review and applications," Renewable Energy, Elsevier, vol. 26(3), pages 339-362.
    7. Gagnon, Luc & Belanger, Camille & Uchiyama, Yohji, 2002. "Life-cycle assessment of electricity generation options: The status of research in year 2001," Energy Policy, Elsevier, vol. 30(14), pages 1267-1278, November.
    8. Weisser, Daniel, 2007. "A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies," Energy, Elsevier, vol. 32(9), pages 1543-1559.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pinto, Mauricio Almeida & Frate, Cláudio Albuquerque & Rodrigues, Thiago Oliveira & Caldeira-Pires, Armando, 2020. "Sensitivity analysis of the carbon payback time for a Brazilian photovoltaic power plant," Utilities Policy, Elsevier, vol. 63(C).
    2. Gabriel Constantino & Marcos Freitas & Neilton Fidelis & Marcio Giannini Pereira, 2018. "Adoption of Photovoltaic Systems Along a Sure Path: A Life-Cycle Assessment (LCA) Study Applied to the Analysis of GHG Emission Impacts," Energies, MDPI, vol. 11(10), pages 1-28, October.
    3. Carnevale, E. & Lombardi, L. & Zanchi, L., 2014. "Life Cycle Assessment of solar energy systems: Comparison of photovoltaic and water thermal heater at domestic scale," Energy, Elsevier, vol. 77(C), pages 434-446.
    4. Shah, Sheikh Khaleduzzaman & Aye, Lu & Rismanchi, Behzad, 2020. "Multi-objective optimisation of a seasonal solar thermal energy storage system for space heating in cold climate," Applied Energy, Elsevier, vol. 268(C).
    5. Jessica Stubenrauch & Beatrice Garske & Felix Ekardt & Katharina Hagemann, 2022. "European Forest Governance: Status Quo and Optimising Options with Regard to the Paris Climate Target," Sustainability, MDPI, vol. 14(7), pages 1-35, April.
    6. Huang, Chenhao & Xie, Lijian & Chen, Weizhen & Lin, Yi & Wu, Yixuan & Li, Penghan & Chen, Weirong & Yang, Wu & Deng, Jinsong, 2024. "Remote-sensing extraction and carbon emission reduction benefit assessment for centralized photovoltaic power plants in Agrivoltaic systems," Applied Energy, Elsevier, vol. 370(C).
    7. Zhu, Rui & Lau, Wing Sze & You, Linlin & Yan, Jinyue & Ratti, Carlo & Chen, Min & Wong, Man Sing & Qin, Zheng, 2024. "Multi-sourced data modelling of spatially heterogenous life-cycle carbon mitigation from installed rooftop photovoltaics: A case study in Singapore," Applied Energy, Elsevier, vol. 362(C).
    8. Shen, Ge & Xu, Bin & Jin, Yunxiang & Chen, Shi & Zhang, Wenbo & Guo, Jian & Liu, Hang & Zhang, Yujing & Yang, Xiuchun, 2017. "Monitoring wind farms occupying grasslands based on remote-sensing data from China’s GF-2 HD satellite—A case study of Jiuquan city, Gansu province, China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 128-136.
    9. Asdrubali, Francesco & Baldinelli, Giorgio & D’Alessandro, Francesco & Scrucca, Flavio, 2015. "Life cycle assessment of electricity production from renewable energies: Review and results harmonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1113-1122.
    10. Nugent, Daniel & Sovacool, Benjamin K., 2014. "Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey," Energy Policy, Elsevier, vol. 65(C), pages 229-244.
    11. Nagashima, Shin & Uchiyama, Yohji & Okajima, Keiichi, 2017. "Hybrid input–output table method for socioeconomic and environmental assessment of a wind power generation system," Applied Energy, Elsevier, vol. 185(P2), pages 1067-1075.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amponsah, Nana Yaw & Troldborg, Mads & Kington, Bethany & Aalders, Inge & Hough, Rupert Lloyd, 2014. "Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 461-475.
    2. Nugent, Daniel & Sovacool, Benjamin K., 2014. "Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey," Energy Policy, Elsevier, vol. 65(C), pages 229-244.
    3. Song, Cuihong & Gardner, Kevin H. & Klein, Sharon J.W. & Souza, Simone Pereira & Mo, Weiwei, 2018. "Cradle-to-grave greenhouse gas emissions from dams in the United States of America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 945-956.
    4. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    5. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2009. "Assessment of sustainability indicators for renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1082-1088, June.
    6. Varun & Bhat, I.K. & Prakash, Ravi, 2009. "LCA of renewable energy for electricity generation systems--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1067-1073, June.
    7. Raadal, Hanne Lerche & Gagnon, Luc & Modahl, Ingunn Saur & Hanssen, Ole Jørgen, 2011. "Life cycle greenhouse gas (GHG) emissions from the generation of wind and hydro power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3417-3422, September.
    8. Feng, Kuishuang & Hubacek, Klaus & Siu, Yim Ling & Li, Xin, 2014. "The energy and water nexus in Chinese electricity production: A hybrid life cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 342-355.
    9. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.
    10. Kubiszewski, Ida & Cleveland, Cutler J. & Endres, Peter K., 2010. "Meta-analysis of net energy return for wind power systems," Renewable Energy, Elsevier, vol. 35(1), pages 218-225.
    11. Varun, & Prakash, Ravi & Bhat, I.K., 2012. "Life cycle greenhouse gas emissions estimation for small hydropower schemes in India," Energy, Elsevier, vol. 44(1), pages 498-508.
    12. Karagiannis, Ioannis C. & Soldatos, Peter G., 2010. "Estimation of critical CO2 values when planning the power source in water desalination: The case of the small Aegean islands," Energy Policy, Elsevier, vol. 38(8), pages 3891-3897, August.
    13. Battisti, L., 2023. "Energy, power, and greenhouse gas emissions for future transition scenarios," Energy Policy, Elsevier, vol. 179(C).
    14. Arvesen, Anders & Hertwich, Edgar G., 2012. "Assessing the life cycle environmental impacts of wind power: A review of present knowledge and research needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5994-6006.
    15. Varun & Prakash, Ravi & Bhat, Inder Krishnan, 2009. "Energy, economics and environmental impacts of renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2716-2721, December.
    16. Huang, Yu-Fong & Gan, Xing-Jia & Chiueh, Pei-Te, 2017. "Life cycle assessment and net energy analysis of offshore wind power systems," Renewable Energy, Elsevier, vol. 102(PA), pages 98-106.
    17. Alvarez, Sergio & Sosa, María & Rubio, Agustín, 2015. "Product and corporate carbon footprint using the compound method based on financial accounts. The case of Osorio wind farms," Applied Energy, Elsevier, vol. 139(C), pages 196-204.
    18. Kaldellis, J.K. & Zafirakis, D. & Stavropoulou, V. & Kaldelli, El., 2012. "Optimum wind- and photovoltaic-based stand-alone systems on the basis of life cycle energy analysis," Energy Policy, Elsevier, vol. 50(C), pages 345-357.
    19. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    20. Yu, Shiwei & Wei, Yi-Ming & Guo, Haixiang & Ding, Liping, 2014. "Carbon emission coefficient measurement of the coal-to-power energy chain in China," Applied Energy, Elsevier, vol. 114(C), pages 290-300.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:23:y:2013:i:c:p:80-90. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.