IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v5y1984i3p81-98.html
   My bibliography  Save this article

Conditional Demand Analysis for Estimating Residential End-Use Load Profiles

Author

Listed:
  • Dennis J. Aigner
  • Cyrus Sorooshian
  • Pamela Kerwin

Abstract

This paper reports some preliminary results from an ongoing study that uses regression methods to break down total household load into its constituent parts, each associated with a particular electricity-using end use or appliance. The data base used for this purpose consists of 15-minute integrated demand readings on a random sample of statistical control group customers from the Los Angeles Department of Water and Power TOD (time of day)-pricing experiment for the months of August 1978 (132 customers), 1979 (108 customers), and 1980 (80 customers). Twenty-four regression equations are fitted, each one aimed at explaining variation in the time-averaged load (averaged over days of the month) over customers as a function of temperature, house size, and binary indicator variables that indicate the presence or absence of each of the end uses of interest. This sort of method for extracting the individual contributions of end uses to total household load has become known as conditional demand analysis (Parti and Parti, 1981). The success of this method for isolating end-use loads statistically, without direct metering of the appliance, depends crucially on whether the ownership patterns of appliances are well mixed. For example, if (as in our sample) everyone owns at least one refrigerator, it will be impossible to isolate refrigerator load. Similarly,

Suggested Citation

  • Dennis J. Aigner & Cyrus Sorooshian & Pamela Kerwin, 1984. "Conditional Demand Analysis for Estimating Residential End-Use Load Profiles," The Energy Journal, , vol. 5(3), pages 81-98, July.
  • Handle: RePEc:sae:enejou:v:5:y:1984:i:3:p:81-98
    DOI: 10.5547/ISSN0195-6574-EJ-Vol5-No3-6
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/ISSN0195-6574-EJ-Vol5-No3-6
    Download Restriction: no

    File URL: https://libkey.io/10.5547/ISSN0195-6574-EJ-Vol5-No3-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael Parti & Cynthia Parti, 1980. "The Total and Appliance-Specific Conditional Demand for Electricity in the Household Sector," Bell Journal of Economics, The RAND Corporation, vol. 11(1), pages 309-321, Spring.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rudolf K.-H. Dennerlein, 1987. "Residential Demand for Electrical Appliances and Electricity in the Federal Republic of Germany," The Energy Journal, , vol. 8(1), pages 69-86, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Runa Nesbakken, 1998. "Residential Energy Consumption for Space Heating in Norwegian Households A Discrete-Continuous Choice Approach," Discussion Papers 231, Statistics Norway, Research Department.
    2. Hache, Emmanuel & Leboullenger, Déborah & Mignon, Valérie, 2017. "Beyond average energy consumption in the French residential housing market: A household classification approach," Energy Policy, Elsevier, vol. 107(C), pages 82-95.
    3. Dorothée Charlier & Sondès Kahouli, 2018. "Fuel poverty and residential energy demand: how fuel-poor households react to energy price fluctuations," Post-Print halshs-01957771, HAL.
    4. Al-Ghandoor, A. & Jaber, J.O. & Al-Hinti, I. & Mansour, I.M., 2009. "Residential past and future energy consumption: Potential savings and environmental impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1262-1274, August.
    5. Dongjun Suh & Seongju Chang, 2012. "An Energy and Water Resource Demand Estimation Model for Multi-Family Housing Complexes in Korea," Energies, MDPI, vol. 5(11), pages 1-20, November.
    6. Dorothée Charlier & Sondès Kahouli, 2019. "From Residential Energy Demand to Fuel Poverty: Income-induced Non-linearities in the Reactions of Households to Energy Price Fluctuations," The Energy Journal, , vol. 40(2), pages 101-138, March.
    7. Pizer, William & Newell, Richard, 2005. "Carbon Mitigation Costs for the Commercial Sector: Discrete-Continuous Choice Analysis of Multifuel Energy Demand," RFF Working Paper Series dp-05-13, Resources for the Future.
    8. Hanne Marit Dalen and Bodil M. Larsen, 2015. "Residential End-use Electricity Demand: Development over Time," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    9. Mattias Vesterberg and Chandra Kiran B. Krishnamurthy, 2016. "Residential End-use Electricity Demand: Implications for Real Time Pricing in Sweden," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    10. Aydinalp, Merih & Ismet Ugursal, V. & Fung, Alan S., 2002. "Modeling of the appliance, lighting, and space-cooling energy consumptions in the residential sector using neural networks," Applied Energy, Elsevier, vol. 71(2), pages 87-110, February.
    11. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    12. Newell, Richard G. & Pizer, William A., 2008. "Carbon mitigation costs for the commercial building sector: Discrete-continuous choice analysis of multifuel energy demand," Resource and Energy Economics, Elsevier, vol. 30(4), pages 527-539, December.
    13. Vesterberg, Mattias, 2016. "The hourly income elasticity of electricity," Energy Economics, Elsevier, vol. 59(C), pages 188-197.
    14. Papineau, Maya & Yassin, Kareman & Newsham, Guy & Brice, Sarah, 2021. "Conditional demand analysis as a tool to evaluate energy policy options on the path to grid decarbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    15. Grandjean, A. & Adnot, J. & Binet, G., 2012. "A review and an analysis of the residential electric load curve models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6539-6565.
    16. Salomé Bakaloglou and Dorothée Charlier, 2019. "Energy Consumption in the French Residential Sector: How Much do Individual Preferences Matter?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    17. Mark F. Morss, 1989. "Short Papers, Notes, and Comments The Incidence of Welfare Losses Due to Appliance Efficiency Standards," The Energy Journal, , vol. 10(1), pages 111-118, January.
    18. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
    19. Yildiz, B. & Bilbao, J.I. & Dore, J. & Sproul, A.B., 2017. "Recent advances in the analysis of residential electricity consumption and applications of smart meter data," Applied Energy, Elsevier, vol. 208(C), pages 402-427.
    20. Sorrell, Steve & Dimitropoulos, John, 2008. "The rebound effect: Microeconomic definitions, limitations and extensions," Ecological Economics, Elsevier, vol. 65(3), pages 636-649, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:5:y:1984:i:3:p:81-98. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.