IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v40y2019i3p243-262.html
   My bibliography  Save this article

Consumer Savings, Price, and Emissions Impacts of Increasing Demand Response in the Midcontinent Electricity Market

Author

Listed:
  • Steve Dahlke
  • Matt Prorok

Abstract

This paper estimates consumer savings, CO2 emissions reductions, and price effects from increasing demand response (DR) dispatch in the Midcontinent Independent System Operator (MISO) electricity market. To quantify market effects, we develop a dynamic supply and demand model to explore a range of DR deployment scenarios. The study is motivated by the existence of regulatory and market rule barriers to market-based deployment of DR resources in the MISO region. We show annual consumer savings from increased market-based DR can vary from $1.3 million to $17.6 million under typical peak operating conditions, depending on the amount of DR resources available for market dispatch and the frequency of deployment. Consumer savings and other market effects increase exponentially during atypical periods with tight supply and high prices. Additionally, we find that DR deployment often reduces CO2 emissions, but the magnitude of emissions reductions varies depending on the emissions content of marginal generation at the time and location of deployment. The results of this study suggest regulators and other stakeholders should focus policy efforts to reducing regulatory barriers to DR deployment in wholesale markets, particularly in locations that experience high price spikes, to improve market efficiency and achieve cost savings for consumers.

Suggested Citation

  • Steve Dahlke & Matt Prorok, 2019. "Consumer Savings, Price, and Emissions Impacts of Increasing Demand Response in the Midcontinent Electricity Market," The Energy Journal, , vol. 40(3), pages 243-262, May.
  • Handle: RePEc:sae:enejou:v:40:y:2019:i:3:p:243-262
    DOI: 10.5547/01956574.40.3.sdah
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/01956574.40.3.sdah
    Download Restriction: no

    File URL: https://libkey.io/10.5547/01956574.40.3.sdah?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cappers, Peter & MacDonald, Jason & Goldman, Charles & Ma, Ookie, 2013. "An assessment of market and policy barriers for demand response providing ancillary services in U.S. electricity markets," Energy Policy, Elsevier, vol. 62(C), pages 1031-1039.
    2. Thomas Taylor & Peter Schwarz & James Cochell, 2005. "24/7 Hourly Response to Electricity Real-Time Pricing with up to Eight Summers of Experience," Journal of Regulatory Economics, Springer, vol. 27(3), pages 235-262, January.
    3. Franz Wirl, 2000. "Lessons from Utility Conservation Programs," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 87-108.
    4. Nic Rivers & Mark Jaccard, 2011. "Electric Utility Demand Side Management in Canada," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 93-116.
    5. Smith, Alexander M. & Brown, Marilyn A., 2015. "Demand response: A carbon-neutral resource?," Energy, Elsevier, vol. 85(C), pages 10-22.
    6. Stephen P. Holland & Erin T. Mansur, 2006. "The Short-Run Effects of Time-Varying Prices in Competitive Electricity Markets," The Energy Journal, , vol. 27(4), pages 127-156, October.
    7. Lau, E.T. & Yang, Q. & Stokes, L. & Taylor, G.A. & Forbes, A.B. & Clarkson, P. & Wright, P.S. & Livina, V.N., 2015. "Carbon savings in the UK demand side response programmes," Applied Energy, Elsevier, vol. 159(C), pages 478-489.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dahlke, Steven & Prorok, Matt, 2018. "Consumer savings, price, and emissions impacts of increasing demand response in the Midcontinent electricity market," OSF Preprints d83bu, Center for Open Science.
    2. Boom, Anette & Schwenen, Sebastian, 2012. "Real-time Pricing in Power Markets: Who Gains?," VfS Annual Conference 2012 (Goettingen): New Approaches and Challenges for the Labor Market of the 21st Century 66062, Verein für Socialpolitik / German Economic Association.
    3. Allcott, Hunt, 2011. "Rethinking real-time electricity pricing," Resource and Energy Economics, Elsevier, vol. 33(4), pages 820-842.
    4. Ciarreta, Aitor & Espinosa, Maria Paz & Pizarro-Irizar, Cristina, 2023. "Pricing policies for efficient demand side management in liberalized electricity markets," Economic Modelling, Elsevier, vol. 121(C).
    5. Lin, Jin & Dong, Jun & Liu, Dongran & Zhang, Yaoyu & Ma, Tongtao, 2022. "From peak shedding to low-carbon transitions: Customer psychological factors in demand response," Energy, Elsevier, vol. 238(PA).
    6. James Cochell & Peter Schwarz & Thomas Taylor, 2012. "Using real-time electricity data to estimate response to time-of-use and flat rates: an application to emissions," Journal of Regulatory Economics, Springer, vol. 42(2), pages 135-158, October.
    7. Anette Boom & Sebastian Schwenen, 2021. "Is real-time pricing smart for consumers?," Journal of Regulatory Economics, Springer, vol. 60(2), pages 193-213, December.
    8. Christian Gambardella & Michael Pahle & Wolf-Peter Schill, 2016. "Do Benefits from Dynamic Tariffing Rise? Welfare Effects of Real-Time Pricing under Carbon-Tax-Induced Variable Renewable Energy Supply," Discussion Papers of DIW Berlin 1621, DIW Berlin, German Institute for Economic Research.
    9. Mattias Vesterberg and Chandra Kiran B. Krishnamurthy, 2016. "Residential End-use Electricity Demand: Implications for Real Time Pricing in Sweden," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    10. Arguedas, Carmen & van Soest, Daan P., 2009. "On reducing the windfall profits in environmental subsidy programs," Journal of Environmental Economics and Management, Elsevier, vol. 58(2), pages 192-205, September.
    11. Gambardella, Christian & Pahle, Michael, 2018. "Time-varying electricity pricing and consumer heterogeneity: Welfare and distributional effects with variable renewable supply," Energy Economics, Elsevier, vol. 76(C), pages 257-273.
    12. Cleary, Kathryne & Palmer, Karen, 2020. "Encouraging Electrification through Energy Service Subscriptions," RFF Working Paper Series 20-09, Resources for the Future.
    13. Frondel, Manuel & Schmidt, Christoph M., 2005. "Evaluating environmental programs: The perspective of modern evaluation research," Ecological Economics, Elsevier, vol. 55(4), pages 515-526, December.
    14. Knaut, Andreas & Paulus, Simon, 2016. "When are consumers responding to electricity prices? An hourly pattern of demand elasticity," EWI Working Papers 2016-7, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 16 Mar 2017.
    15. Hyun, Minwoo & Kim, Yeong Jae & Eom, Jiyong, 2020. "Assessing the impact of a demand-resource bidding market on an electricity generation portfolio and the environment," Energy Policy, Elsevier, vol. 147(C).
    16. Cifor, Angela & Denholm, Paul & Ela, Erik & Hodge, Bri-Mathias & Reed, Adam, 2015. "The policy and institutional challenges of grid integration of renewable energy in the western United States," Utilities Policy, Elsevier, vol. 33(C), pages 34-41.
    17. Stephen P. Holland & Erin T. Mansur, 2008. "Is Real-Time Pricing Green? The Environmental Impacts of Electricity Demand Variance," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 550-561, August.
    18. Annala, Salla & Ruggiero, Salvatore & Kangas, Hanna-Liisa & Honkapuro, Samuli & Ohrling, Tiina, 2022. "Impact of home market on business development and internationalization of demand response firms," Energy, Elsevier, vol. 242(C).
    19. Gebreegziabher, Zenebe & van Kooten, G. Cornelis & van Soest, Daan P., 2017. "Technological innovation and dispersion: Environmental benefits and the adoption of improved biomass cookstoves in Tigrai, northern Ethiopia," Energy Economics, Elsevier, vol. 67(C), pages 337-345.
    20. Jacob Mays & Diego Klabjan, 2017. "Optimization of Time-Varying Electricity Rates," The Energy Journal, , vol. 38(5), pages 67-92, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:40:y:2019:i:3:p:243-262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.