IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v37y2016i4p165-186.html
   My bibliography  Save this article

Does Retrofitted Insulation Reduce Household Energy Use? Theory and Practice

Author

Listed:
  • Arthur Grimes
  • Nicholas Preval
  • Chris Young
  • Richard Arnold
  • Tim Denne
  • Philippa Howden-Chapman
  • Lucy Telfar-Barnard

Abstract

We analyze the household energy use impacts of a large-scale, universally available, subsidized retrofit insulation and clean heat scheme. Theory shows that the energy-saving effects of such schemes are ambiguous. Our difference-in-differ-ence model of energy impacts resulting from each of insulation and clean heat treatment uses a sample of more than 12,000 treated houses. Retrofitted insulation treatment under the Warm Up New Zealand: Heat Smart program resulted in a statistically significant reduction in metered household energy consumption of almost 2%. Clean heat (heat pump) treatment resulted in increased electricity use but little change in total metered energy use other than at warmer temperatures, when heat pumps may have been used as air conditioners. Actual energy savings from insulation are approximately one-third of the modeled energy savings predicted by an engineering model.

Suggested Citation

  • Arthur Grimes & Nicholas Preval & Chris Young & Richard Arnold & Tim Denne & Philippa Howden-Chapman & Lucy Telfar-Barnard, 2016. "Does Retrofitted Insulation Reduce Household Energy Use? Theory and Practice," The Energy Journal, , vol. 37(4), pages 165-186, October.
  • Handle: RePEc:sae:enejou:v:37:y:2016:i:4:p:165-186
    DOI: 10.5547/01956574.37.4.agri
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/01956574.37.4.agri
    Download Restriction: no

    File URL: https://libkey.io/10.5547/01956574.37.4.agri?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Levinson, Arik, 2014. "California energy efficiency: Lessons for the rest of the world, or not?," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 269-289.
    2. Jaffe Adam B. & Stavins Robert N., 1995. "Dynamic Incentives of Environmental Regulations: The Effects of Alternative Policy Instruments on Technology Diffusion," Journal of Environmental Economics and Management, Elsevier, vol. 29(3), pages 43-63, November.
    3. Kenneth Gillingham & Matthew J. Kotchen & David S. Rapson & Gernot Wagner, 2013. "The rebound effect is overplayed," Nature, Nature, vol. 493(7433), pages 475-476, January.
    4. Phillips, Yvonne & Scarpa, Riccardo, 2010. "Waikato warm home study," 2010 Conference, August 26-27, 2010, Nelson, New Zealand 96494, New Zealand Agricultural and Resource Economics Society.
    5. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    6. Chong, Howard, 2012. "Building vintage and electricity use: Old homes use less electricity in hot weather," European Economic Review, Elsevier, vol. 56(5), pages 906-930.
    7. Lucas W. Davis & Alan Fuchs & Paul Gertler, 2014. "Cash for Coolers: Evaluating a Large-Scale Appliance Replacement Program in Mexico," American Economic Journal: Economic Policy, American Economic Association, vol. 6(4), pages 207-238, November.
    8. Preval, Nick & Chapman, Ralph & Pierse, Nevil & Howden-Chapman, Philippa, 2010. "Evaluating energy, health and carbon co-benefits from improved domestic space heating: A randomised community trial," Energy Policy, Elsevier, vol. 38(8), pages 3965-3972, August.
    9. Howden-Chapman, P. & Crane, J. & Matheson, A. & Viggers, H. & Cunningham, M. & Blakely, T. & O'Dea, D. & Cunningham, C. & Woodward, A. & Saville-Smith, K. & Baker, M. & Waipara, N., 2005. "Retrofitting houses with insulation to reduce health inequalities: Aims and methods of a clustered, randomised community-based trial," Social Science & Medicine, Elsevier, vol. 61(12), pages 2600-2610, December.
    10. Grant D. Jacobsen & Matthew J. Kotchen, 2013. "Are Building Codes Effective at Saving Energy? Evidence from Residential Billing Data in Florida," The Review of Economics and Statistics, MIT Press, vol. 95(1), pages 34-49, March.
    11. Howden-Chapman, Philippa & Viggers, Helen & Chapman, Ralph & O'Dea, Des & Free, Sarah & O'Sullivan, Kimberley, 2009. "Warm homes: Drivers of the demand for heating in the residential sector in New Zealand," Energy Policy, Elsevier, vol. 37(9), pages 3387-3399, September.
    12. Sorrell, Steve & Dimitropoulos, John & Sommerville, Matt, 2009. "Empirical estimates of the direct rebound effect: A review," Energy Policy, Elsevier, vol. 37(4), pages 1356-1371, April.
    13. Arik Levinson, 2014. "How Much Energy Do Building Energy Codes Really Save? Evidence from California," NBER Working Papers 20797, National Bureau of Economic Research, Inc.
    14. Berkhout, Peter H. G. & Muskens, Jos C. & W. Velthuijsen, Jan, 2000. "Defining the rebound effect," Energy Policy, Elsevier, vol. 28(6-7), pages 425-432, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kerr, Niall & Gouldson, Andy & Barrett, John, 2017. "The rationale for energy efficiency policy: Assessing the recognition of the multiple benefits of energy efficiency retrofit policy," Energy Policy, Elsevier, vol. 106(C), pages 212-221.
    2. Dorothee Charlier and Berangere Legendre, 2019. "A Multidimensional Approach to Measuring Fuel Poverty," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    3. Liang, Jing & Qiu, Yueming & James, Timothy & Ruddell, Benjamin L. & Dalrymple, Michael & Earl, Stevan & Castelazo, Alex, 2018. "Do energy retrofits work? Evidence from commercial and residential buildings in Phoenix," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 726-743.
    4. Lang, Ghislaine & Lanz, Bruno, 2022. "Climate policy without a price signal: Evidence on the implicit carbon price of energy efficiency in buildings," Journal of Environmental Economics and Management, Elsevier, vol. 111(C).
    5. Miriam Berretta & Joshua Furgeson & Yue (Nicole) Wu & Collins Zamawe & Ian Hamilton & John Eyers, 2021. "Residential energy efficiency interventions: A meta‐analysis of effectiveness studies," Campbell Systematic Reviews, John Wiley & Sons, vol. 17(4), December.
    6. Yujie Xu & Vivian Loftness & Edson Severnini, 2021. "Using Machine Learning to Predict Retrofit Effects for a Commercial Building Portfolio," Energies, MDPI, vol. 14(14), pages 1-24, July.
    7. Jia, huanyu & Lin, boqiang, 2024. "Who wants to use it most? Exploring public willingness to pay for district heating in hotly debated southern Chinese cities," Energy Policy, Elsevier, vol. 192(C).
    8. Xiao Han & Chu Wei, 2021. "Household energy consumption: state of the art, research gaps, and future prospects," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12479-12504, August.
    9. Ralph Chapman & Nicholas Preval & Philippa Howden-Chapman, 2017. "How Economic Analysis Can Contribute to Understanding the Links between Housing and Health," IJERPH, MDPI, vol. 14(9), pages 1-12, August.
    10. Arik Levinson, 2014. "How Much Energy Do Building Energy Codes Really Save? Evidence from California," NBER Working Papers 20797, National Bureau of Economic Research, Inc.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Papineau, Maya, 2017. "Setting the standard? A framework for evaluating the cost-effectiveness of building energy standards," Energy Economics, Elsevier, vol. 64(C), pages 63-76.
    2. Arik Levinson, 2014. "How Much Energy Do Building Energy Codes Really Save? Evidence from California," NBER Working Papers 20797, National Bureau of Economic Research, Inc.
    3. Arthur, Grimes & Tim, Denne & Philippa, Howden-Chapman & Richard, Arnold & Lucy, Telfar-Barnard & Nicholas, Preval & Chris, Young, 2012. "Cost benefit analysis of the Warm Up New Zealand: Heat Smart programme," MPRA Paper 99919, University Library of Munich, Germany.
    4. Arik Levinson, 2016. "How Much Energy Do Building Energy Codes Save? Evidence from California Houses," American Economic Review, American Economic Association, vol. 106(10), pages 2867-2894, October.
    5. Hancevic, Pedro I. & Sandoval, Hector H., 2022. "Low-income energy efficiency programs and energy consumption," Journal of Environmental Economics and Management, Elsevier, vol. 113(C).
    6. Aydin, Erdal, 2016. "Energy conservation in the residential sector : The role of policy and market forces," Other publications TiSEM b9cedba8-1310-4097-90fb-b, Tilburg University, School of Economics and Management.
    7. Ouyang, Jinlong & Long, Enshen & Hokao, Kazunori, 2010. "Rebound effect in Chinese household energy efficiency and solution for mitigating it," Energy, Elsevier, vol. 35(12), pages 5269-5276.
    8. Aydın, Erdal & Brounen, Dirk & Ergün, Ahmet, 2023. "The rebound effect of solar panel adoption: Evidence from Dutch households," Energy Economics, Elsevier, vol. 120(C).
    9. Benjamin Volland, 2016. "Efficiency in Domestic Space Heating: An Estimation of the Direct Rebound Effect for Domestic Heating in the U.S," IRENE Working Papers 16-01, IRENE Institute of Economic Research.
    10. Howden-Chapman, Philippa & Viggers, Helen & Chapman, Ralph & O’Sullivan, Kimberley & Telfar Barnard, Lucy & Lloyd, Bob, 2012. "Tackling cold housing and fuel poverty in New Zealand: A review of policies, research, and health impacts," Energy Policy, Elsevier, vol. 49(C), pages 134-142.
    11. Halvorsen, Bente & Larsen, Bodil Merethe, 2021. "Identifying drivers for the direct rebound when energy efficiency is unknown. The importance of substitution and scale effects," Energy, Elsevier, vol. 222(C).
    12. Louis-Gaëtan Giraudet & S. Houde, 2013. "Double moral hazard and the energy efficiency gap," Post-Print hal-00799725, HAL.
    13. Deng, Gary & Newton, Peter, 2017. "Assessing the impact of solar PV on domestic electricity consumption: Exploring the prospect of rebound effects," Energy Policy, Elsevier, vol. 110(C), pages 313-324.
    14. Makram El-Shagi & Claus Michelsen & Sebastian Rosenschon, 2014. "Regulation, Innovation and Technology Diffusion: Evidence from Building Energy Efficiency Standards in Germany," Discussion Papers of DIW Berlin 1371, DIW Berlin, German Institute for Economic Research.
    15. Philippa Howden-Chapman & Julian Crane & Ralph Chapman & Geoff Fougere, 2011. "Improving health and energy efficiency through community-based housing interventions," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 56(6), pages 583-588, December.
    16. Ghoddusi, Hamed & Roy, Mandira, 2017. "Supply elasticity matters for the rebound effect and its impact on policy comparisons," Energy Economics, Elsevier, vol. 67(C), pages 111-120.
    17. Maya M. Papineau, 2015. "Setting the Standard: Commercial Electricity Consumption Responses to Energy Codes," Carleton Economic Papers 15-04, Carleton University, Department of Economics.
    18. Copiello, Sergio, 2017. "Building energy efficiency: A research branch made of paradoxes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1064-1076.
    19. Hadush Meles, Tensay & Farrell, Niall & Curtis, John, 2023. "Are energy performance certificates a strong predictor of actual energy use? Evidence from high-frequency thermostat panel data," Papers WP749, Economic and Social Research Institute (ESRI).
    20. Meier, Helena & Tode, Christian, 2015. "How Technological Potentials are Undermined by Economic and Behavioural Responses - The Treatment Effect of Endogenous Energy Efficiency Measures," EWI Working Papers 2015-4, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).

    More about this item

    Keywords

    Energy efficiency; Heat pump; Retrofitted insulation; Take-back; effect;
    All these keywords.

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:37:y:2016:i:4:p:165-186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.