IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v36y2015i1p149-184.html
   My bibliography  Save this article

The Optimal Share of Variable Renewables: How the Variability of Wind and Solar Power affects their Welfare-optimal Deployment

Author

Listed:
  • Lion Hirth

Abstract

This paper estimates the welfare-optimal market share of wind and solar power, explicitly taking into account their output variability. We present a theoretical valuation framework that consistently accounts for the impact of fluctuations over time, forecast errors, and the location of generators in the power grid on the marginal value of electricity from renewables. Then the optimal share of wind and solar power in Northwestern Europe’s generation mix is estimated from a calibrated numerical model. We find the optimal long-term wind share to be 20%, three times more than today; however, we also find significant parameter uncertainty. Variability significantly impacts results: if winds were constant, the optimal share would be 60%. In addition, the effect of technological change, price shocks, and policies on the optimal share is assessed. We present and explain several surprising findings, including a negative impact of CO2 prices on optimal wind deployment.

Suggested Citation

  • Lion Hirth, 2015. "The Optimal Share of Variable Renewables: How the Variability of Wind and Solar Power affects their Welfare-optimal Deployment," The Energy Journal, , vol. 36(1), pages 149-184, January.
  • Handle: RePEc:sae:enejou:v:36:y:2015:i:1:p:149-184
    DOI: 10.5547/01956574.36.1.6
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/01956574.36.1.6
    Download Restriction: no

    File URL: https://libkey.io/10.5547/01956574.36.1.6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nelson, James & Johnston, Josiah & Mileva, Ana & Fripp, Matthias & Hoffman, Ian & Petros-Good, Autumn & Blanco, Christian & Kammen, Daniel M., 2012. "High-resolution modeling of the western North American power system demonstrates low-cost and low-carbon futures," Energy Policy, Elsevier, vol. 43(C), pages 436-447.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simshauser, Paul & Newbery, David, 2024. "Non-firm vs priority access: On the long run average and marginal costs of renewables in Australia," Energy Economics, Elsevier, vol. 136(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julia K. Szinai & David Yates & Pedro A. Sánchez-Pérez & Martin Staadecker & Daniel M. Kammen & Andrew D. Jones & Patricia Hidalgo-Gonzalez, 2024. "Climate change and its influence on water systems increases the cost of electricity system decarbonization," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Alimou, Yacine & Maïzi, Nadia & Bourmaud, Jean-Yves & Li, Marion, 2020. "Assessing the security of electricity supply through multi-scale modeling: The TIMES-ANTARES linking approach," Applied Energy, Elsevier, vol. 279(C).
    3. Arjmand, Reza & Monroe, Jacob & McPherson, Madeleine, 2023. "The role of emerging technologies in Canada's electricity system transition," Energy, Elsevier, vol. 278(PA).
    4. Merrick, James H. & Bistline, John E.T. & Blanford, Geoffrey J., 2024. "On representation of energy storage in electricity planning models," Energy Economics, Elsevier, vol. 136(C).
    5. Seyed Reza Mirnezami & Amin Mohseni Cheraghlou, 2022. "Wind Power in Iran: Technical, Policy, and Financial Aspects for Better Energy Resource Management," Energies, MDPI, vol. 15(9), pages 1-18, April.
    6. Lenzen, Manfred & McBain, Bonnie & Trainer, Ted & Jütte, Silke & Rey-Lescure, Olivier & Huang, Jing, 2016. "Simulating low-carbon electricity supply for Australia," Applied Energy, Elsevier, vol. 179(C), pages 553-564.
    7. Natalia Gonzalez & Paul Serna-Torre & Pedro A. Sánchez-Pérez & Ryan Davidson & Bryan Murray & Martin Staadecker & Julia Szinai & Rachel Wei & Daniel M. Kammen & Deborah A. Sunter & Patricia Hidalgo-Go, 2024. "Offshore wind and wave energy can reduce total installed capacity required in zero-emissions grids," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Bartlett, Stuart & Dujardin, Jérôme & Kahl, Annelen & Kruyt, Bert & Manso, Pedro & Lehning, Michael, 2018. "Charting the course: A possible route to a fully renewable Swiss power system," Energy, Elsevier, vol. 163(C), pages 942-955.
    9. Frew, Bethany A. & Becker, Sarah & Dvorak, Michael J. & Andresen, Gorm B. & Jacobson, Mark Z., 2016. "Flexibility mechanisms and pathways to a highly renewable US electricity future," Energy, Elsevier, vol. 101(C), pages 65-78.
    10. Noel, Lance & Brodie, Joseph F. & Kempton, Willett & Archer, Cristina L. & Budischak, Cory, 2017. "Cost minimization of generation, storage, and new loads, comparing costs with and without externalities," Applied Energy, Elsevier, vol. 189(C), pages 110-121.
    11. Lion Hirth, 2015. "The Optimal Share of Variable Renewables: How the Variability of Wind and Solar Power affects their Welfare-optimal Deployment," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    12. Munoz, Francisco D. & Pumarino, Bruno J. & Salas, Ignacio A., 2017. "Aiming low and achieving it: A long-term analysis of a renewable policy in Chile," Energy Economics, Elsevier, vol. 65(C), pages 304-314.
    13. Hyun, Minwoo & Kim, Yeong Jae & Eom, Jiyong, 2020. "Assessing the impact of a demand-resource bidding market on an electricity generation portfolio and the environment," Energy Policy, Elsevier, vol. 147(C).
    14. Frew, Bethany A. & Jacobson, Mark Z., 2016. "Temporal and spatial tradeoffs in power system modeling with assumptions about storage: An application of the POWER model," Energy, Elsevier, vol. 117(P1), pages 198-213.
    15. Solomon, A.A. & Kammen, Daniel M. & Callaway, D., 2016. "Investigating the impact of wind–solar complementarities on energy storage requirement and the corresponding supply reliability criteria," Applied Energy, Elsevier, vol. 168(C), pages 130-145.
    16. Gitizadeh, Mohsen & Kaji, Mahdi & Aghaei, Jamshid, 2013. "Risk based multiobjective generation expansion planning considering renewable energy sources," Energy, Elsevier, vol. 50(C), pages 74-82.
    17. Rodriguez, Rolando A. & Becker, Sarah & Greiner, Martin, 2015. "Cost-optimal design of a simplified, highly renewable pan-European electricity system," Energy, Elsevier, vol. 83(C), pages 658-668.
    18. Geoffrey J. Blanford & James H. Merrick & John E.T. Bistline & David T. Young, 2018. "Simulating Annual Variation in Load, Wind, and Solar by Representative Hour Selection," The Energy Journal, , vol. 39(3), pages 189-212, May.
    19. Yang, Christopher & Yeh, Sonia & Zakerinia, Saleh & Ramea, Kalai & McCollum, David, 2015. "Achieving California's 80% greenhouse gas reduction target in 2050: Technology, policy and scenario analysis using CA-TIMES energy economic systems model," Energy Policy, Elsevier, vol. 77(C), pages 118-130.
    20. Jayadev, Gopika & Leibowicz, Benjamin D. & Kutanoglu, Erhan, 2020. "U.S. electricity infrastructure of the future: Generation and transmission pathways through 2050," Applied Energy, Elsevier, vol. 260(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:36:y:2015:i:1:p:149-184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.