IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v34y2013i3p217-237.html
   My bibliography  Save this article

Jumps in Oil Prices: The Role of Economic News

Author

Listed:
  • John Elder
  • Hong Miao
  • Sanjay Ramchander

Abstract

Previous research has been unable to identify a strong link between crude oil prices and economic news. We reexamine this relationship using high frequency intraday data and relatively new methodology to estimate jumps in oil prices. We find a surprisingly strong correspondence between high frequency jumps in oil prices and the arrival of new economic information, with the largest jumps tending to be preceded identifiable economic news. These results indicate that oil prices respond very rapidly to new economic data in ways that appear consistent with economic theory, and also suggest that economic news, rather than speculation unrelated to the economic environment, drives jumps in oil prices.

Suggested Citation

  • John Elder & Hong Miao & Sanjay Ramchander, 2013. "Jumps in Oil Prices: The Role of Economic News," The Energy Journal, , vol. 34(3), pages 217-237, July.
  • Handle: RePEc:sae:enejou:v:34:y:2013:i:3:p:217-237
    DOI: 10.5547/01956574.34.3.10
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/01956574.34.3.10
    Download Restriction: no

    File URL: https://libkey.io/10.5547/01956574.34.3.10?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. repec:bla:jfinan:v:59:y:2004:i:2:p:755-793 is not listed on IDEAS
    2. Torben G. Andersen & Tim Bollerslev & Per Frederiksen & Morten Ørregaard Nielsen, 2010. "Continuous-time models, realized volatilities, and testable distributional implications for daily stock returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 233-261.
    3. repec:taf:jnlbes:v:30:y:2012:i:2:p:242-255 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    2. Yu‐Sheng Lai, 2022. "High‐frequency data and stock–bond investing," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1623-1638, December.
    3. Rituparna Sen & Pulkit Mehrotra, 2016. "Modeling Jumps and Volatility of the Indian Stock Market Using High-Frequency Data," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 14(1), pages 137-150, June.
    4. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S., 2020. "High-frequency jump tests: Which test should we use?," Journal of Econometrics, Elsevier, vol. 219(2), pages 478-487.
    5. Julien Chevallier & Benoît Sévi, 2011. "On the volatility-volume relationship in energy futures markets using intraday data," Working Papers hal-04140997, HAL.
    6. Lucio Maria Calcagnile & Giacomo Bormetti & Michele Treccani & Stefano Marmi & Fabrizio Lillo, 2015. "Collective synchronization and high frequency systemic instabilities in financial markets," Papers 1505.00704, arXiv.org.
    7. El Ouadghiri, Imane & Uctum, Remzi, 2016. "Jumps in equilibrium prices and asymmetric news in foreign exchange markets," Economic Modelling, Elsevier, vol. 54(C), pages 218-234.
    8. Tetsuya Takaishi, 2016. "Dynamical cross-correlation of multiple time series Ising model," Evolutionary and Institutional Economics Review, Springer, vol. 13(2), pages 455-468, December.
    9. Clements, Adam & Liao, Yin, 2017. "Forecasting the variance of stock index returns using jumps and cojumps," International Journal of Forecasting, Elsevier, vol. 33(3), pages 729-742.
    10. Dungey, Mardi & Hvozdyk, Lyudmyla, 2012. "Cojumping: Evidence from the US Treasury bond and futures markets," Journal of Banking & Finance, Elsevier, vol. 36(5), pages 1563-1575.
    11. Torben G. Andersen & Viktor Todorov, 2009. "Realized Volatility and Multipower Variation," CREATES Research Papers 2009-49, Department of Economics and Business Economics, Aarhus University.
    12. Nielsen, Morten Ørregaard & Frederiksen, Per, 2008. "Finite sample accuracy and choice of sampling frequency in integrated volatility estimation," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 265-286, March.
    13. Siem Jan Koopman & Marcel Scharth, 2012. "The Analysis of Stochastic Volatility in the Presence of Daily Realized Measures," Journal of Financial Econometrics, Oxford University Press, vol. 11(1), pages 76-115, December.
    14. Chen, Yixiang & Ma, Feng & Zhang, Yaojie, 2019. "Good, bad cojumps and volatility forecasting: New evidence from crude oil and the U.S. stock markets," Energy Economics, Elsevier, vol. 81(C), pages 52-62.
    15. Nikolaus Hautsch & Lada M. Kyj & Roel C. A. Oomen, 2012. "A blocking and regularization approach to high‐dimensional realized covariance estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(4), pages 625-645, June.
    16. Jiang, George J. & Zhu, Kevin X., 2017. "Information Shocks and Short-Term Market Underreaction," Journal of Financial Economics, Elsevier, vol. 124(1), pages 43-64.
    17. Gao, Ya & Han, Xing & Li, Youwei & Xiong, Xiong, 2019. "Overnight momentum, informational shocks, and late informed trading in China," International Review of Financial Analysis, Elsevier, vol. 66(C).
    18. Chowdhury, Biplob & Jeyasreedharan, Nagaratnam, 2019. "An empirical examination of the jump and diffusion aspects of asset pricing: Japanese evidence," Working Papers 2019-02, University of Tasmania, Tasmanian School of Business and Economics.
    19. Andersen, Torben G. & Bollerslev, Tim & Huang, Xin, 2011. "A reduced form framework for modeling volatility of speculative prices based on realized variation measures," Journal of Econometrics, Elsevier, vol. 160(1), pages 176-189, January.
    20. Francesco Audrino & Yujia Hu, 2016. "Volatility Forecasting: Downside Risk, Jumps and Leverage Effect," Econometrics, MDPI, vol. 4(1), pages 1-24, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:34:y:2013:i:3:p:217-237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.