IDEAS home Printed from https://ideas.repec.org/a/sae/emffin/v10y2011i2p175-196.html
   My bibliography  Save this article

Post-colonial Finance

Author

Listed:
  • S. Maheswaran

    (Professor, Centre for Advanced Financial Studies, Institute for Financial Management and Research, 24 Kothari Road, Nungambakkam, Chennai 600034, India. E-mail: mahesh@ifmr.ac.in)

  • G. Balasubramanian

    (Professor, Institute for Financial Management and Research, 24 Kothari Road, Nungambakkam, Chennai 600034, India. E-mail: bala@ifmr.ac.in)

  • C.A. Yoonus

    (Research Scholar, Institute for Financial Management and Research, 24 Kothari Road, Nungambakkam, Chennai 600034, India. E-mail: yoonus@ifmr.ac.in)

Abstract

A new variance ratio is proposed in this article that utilises the extreme values of asset prices. On the basis of the specification test, it is documented that there is excess volatility in the Indian stock market, whereas this feature is completely absent in the US. It is also found that such excess volatility is persistent in India in the sense that it gives rise to excessive path dependence. Furthermore, it is shown how such path dependence can be modelled from a theoretical point of view by way of the Binomial Markov Random Walk model.

Suggested Citation

  • S. Maheswaran & G. Balasubramanian & C.A. Yoonus, 2011. "Post-colonial Finance," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 10(2), pages 175-196, August.
  • Handle: RePEc:sae:emffin:v:10:y:2011:i:2:p:175-196
    DOI: 10.1177/097265271101000202
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/097265271101000202
    Download Restriction: no

    File URL: https://libkey.io/10.1177/097265271101000202?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shiller, Robert J, 1981. "Do Stock Prices Move Too Much to be Justified by Subsequent Changes in Dividends?," American Economic Review, American Economic Association, vol. 71(3), pages 421-436, June.
    2. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
    3. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    4. Thierry Ané & Hélyette Geman, 2000. "Order Flow, Transaction Clock, and Normality of Asset Returns," Journal of Finance, American Finance Association, vol. 55(5), pages 2259-2284, October.
    5. Ball, Clifford A & Torous, Walter N, 1984. "The Maximum Likelihood Estimation of Security Price Volatility: Theory, Evidence, and Application to Option Pricing," The Journal of Business, University of Chicago Press, vol. 57(1), pages 97-112, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumar, Dilip & Maheswaran, S., 2013. "Detecting sudden changes in volatility estimated from high, low and closing prices," Economic Modelling, Elsevier, vol. 31(C), pages 484-491.
    2. Maheswaran, S. & Kumar, Dilip, 2013. "An automatic bias correction procedure for volatility estimation using extreme values of asset prices," Economic Modelling, Elsevier, vol. 33(C), pages 701-712.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yadav, Pradeep K., 1992. "Event studies based on volatility of returns and trading volume: A review," The British Accounting Review, Elsevier, vol. 24(2), pages 157-184.
    2. Muneer Shaik & S. Maheswaran, 2019. "Robust Volatility Estimation with and Without the Drift Parameter," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(1), pages 57-91, March.
    3. Segnon, Mawuli & Lux, Thomas, 2013. "Multifractal models in finance: Their origin, properties, and applications," Kiel Working Papers 1860, Kiel Institute for the World Economy (IfW Kiel).
    4. Jean-Philippe Bouchaud & J. Doyne Farmer & Fabrizio Lillo, 2008. "How markets slowly digest changes in supply and demand," Papers 0809.0822, arXiv.org.
    5. Muneer Shaik & S. Maheswaran, 2016. "Modelling the Paradox in Stock Markets by Variance Ratio Volatility Estimator that Utilises Extreme Values of Asset Prices," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 15(3), pages 333-361, December.
    6. Parthajit Kayal & S. Maheswaran, 2017. "Is USD-INR Really an Excessively Volatile Currency Pair?," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 15(2), pages 329-342, June.
    7. Anthony Murphy & Marwan Izzeldin, 2005. "Order Flow, Transaction Clock, and Normality of Asset Returns: A Comment on Ané and Geman (2000)," Finance 0512005, University Library of Munich, Germany.
    8. Enrique Ter Horst & Abel Rodriguez & Henryk Gzyl & German Molina, 2012. "Stochastic volatility models including open, close, high and low prices," Quantitative Finance, Taylor & Francis Journals, vol. 12(2), pages 199-212, May.
    9. Rangel, José Gonzalo, 2011. "Macroeconomic news, announcements, and stock market jump intensity dynamics," Journal of Banking & Finance, Elsevier, vol. 35(5), pages 1263-1276, May.
    10. Alia Afzal & Philipp Sibbertsen, 2021. "Modeling fractional cointegration between high and low stock prices in Asian countries," Empirical Economics, Springer, vol. 60(2), pages 661-682, February.
    11. Torben G. Andersen & Luca Benzoni, 2008. "Realized volatility," Working Paper Series WP-08-14, Federal Reserve Bank of Chicago.
    12. Bonnier, Jean-Baptiste, 2021. "Speculation and informational efficiency in commodity futures markets," Journal of International Money and Finance, Elsevier, vol. 117(C).
    13. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range‐Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, June.
    14. Hautsch, Nikolaus, 2008. "Capturing common components in high-frequency financial time series: A multivariate stochastic multiplicative error model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(12), pages 3978-4015, December.
    15. Feng-Tse Tsai, 2019. "Option Implied Stock Buy-Side and Sell-Side Market Depths," Risks, MDPI, vol. 7(4), pages 1-16, October.
    16. Chen, Xiaoyu & Chiang, Thomas C., 2016. "Stock returns and economic forces—An empirical investigation of Chinese markets," Global Finance Journal, Elsevier, vol. 30(C), pages 45-65.
    17. L. C. G. Rogers & Fanyin Zhou, 2008. "Estimating correlation from high, low, opening and closing prices," Papers 0804.0162, arXiv.org.
    18. M. Rahman & M. Hassan, 2013. "Firm fundamentals and stock prices in emerging Asian stock markets: some panel data evidence," Review of Quantitative Finance and Accounting, Springer, vol. 41(3), pages 463-487, October.
    19. Darrat, Ali F. & Zhong, Maosen & Cheng, Louis T.W., 2007. "Intraday volume and volatility relations with and without public news," Journal of Banking & Finance, Elsevier, vol. 31(9), pages 2711-2729, September.
    20. repec:lan:wpaper:3050 is not listed on IDEAS
    21. Lakshmi Padmakumari & S Maheswaran, 2016. "A Regression Based Approach to Capturing the Level Dependence in the Volatility of Stock Returns," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 6(12), pages 706-718, December.

    More about this item

    Keywords

    JEL Classification: G12; JEL Classification: G14; JEL Classification: G15; Excess volatility; emerging markets; neo-classical finance; Markov property of asset prices; Binomial Markov Random Walk model;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:emffin:v:10:y:2011:i:2:p:175-196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: http://www.ifmr.ac.in .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.